论文标题

机器学习启用了对机器人技术的智能皮肤的力传感

Machine Learning Enabled Force Sensing of a Smart Skin for Robotics

论文作者

Liu, Fan, He, Guangyu, Jiang, Xihang, Wang, Lifeng

论文摘要

具有触摸感的人造皮肤可以支持机器人有效与周围环境相互作用并完成复杂的任务。传统的多层人造皮肤需要复杂的制造工艺,这可能会导致高成本以及对皮肤材料和大小的限制。在本文中,我们演示了一种基于机器学习的方法,以使用最直接响应作为输入信号:应变分布来预测点载荷的位置。从最简单的问题开始,可以预测作用于平坦表面上的单点载荷的位置,开发,训练和测试ML模型。准确的预测是从ML模型获得的,讨论了影响精度的参数,并执行验证测试。之后,修改了ML模型以求解多目标预测问题:预测多个点载荷的位置和大小。最后,将ML模型升级到2步模型,以预测作用在可变形表面上的点载荷的位置。演示的方法使正常的未经处理的表面能够感觉到触摸,无论表面是什么,表面大小的大小。因此,我们认为这种基于ML的负载位置预测方法可能是用于应用程序,例如灵活的触摸屏,机器人智能皮肤和微触摸传感器等应用的有前途的工具。

Artificial skin with the sense of touch can support robots to interact with the surrounding environment efficiently and accomplish complex tasks. Traditional multi-layered artificial skins require complex manufacturing processes which can result in high cost as well as limitations on the material and size of the skin. In this paper, we demonstrate a machine learning based approach to predict positions of point loads using the most direct response as input signal: strain distribution. Starting with the simplest problem, predicting the position of a single point load acting on a flat surface, an ML model is developed, trained, and tested. Accurate predictions are obtained from the ML model, parameters that affect the accuracy are discussed, and validation tests are performed. After that, the ML model is modified to solve multi-objective prediction problems: predicting positions and magnitudes of multiple point loads. In the end, the ML model is upgraded to a 2-step model to predict the position of a point load acting on a deformable surface. The demonstrated approach enables a normal untreated surface to feel a touch no matter what the surface is made of or how large or small the size of the surface is. Therefore, we believe this ML-based load position prediction approach could be a promising tool for applications such as flexible touch screens, smart skin for robots, and micro touch sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源