论文标题

频率凸轮:实时成像周期性信号

Frequency Cam: Imaging Periodic Signals in Real-Time

论文作者

Pfrommer, Bernd

论文摘要

由于它们的高时间分辨率和大型动态范围事件摄像机非常适合图像中时间周期信号的分析。在这项工作中,我们提出了一种有效且完全异步的事件摄像机算法,用于检测图像像素闪烁的基本频率。该算法采用二阶数字无限脉冲响应(IIR)滤波器来执行近似像素亮度重建,并且比我们比较的基线方法更强大。我们进一步证明,使用信号的下降边缘会比上升边缘更准确地估计,并且对于某些信号,插值零级交叉点可以进一步提高准确性。我们的实验发现,摄像机在检测最高64kHz的频率的出色功能中,单像素不会延续到完整的传感器成像,因为读出带宽的限制是一个严重的障碍。这表明,更接近传感器的硬件实现将允许大大改进频率成像。我们讨论了全面传感器频率成像和当前频率凸轮的重要设计参数,这是一种开源实现,作为ROS节点,可以在笔记本电脑CPU的单个核心上运行,每秒超过5000万个事件。它产生的结果在质量上与从预言的Metavision工具包中的封闭源振动分析模块获得的结果非常相似。可以在https://github.com/berndpfrommer/frequency_cam上找到频率CAM的代码和演示视频。

Due to their high temporal resolution and large dynamic range event cameras are uniquely suited for the analysis of time-periodic signals in an image. In this work we present an efficient and fully asynchronous event camera algorithm for detecting the fundamental frequency at which image pixels flicker. The algorithm employs a second-order digital infinite impulse response (IIR) filter to perform an approximate per-pixel brightness reconstruction and is more robust to high-frequency noise than the baseline method we compare to. We further demonstrate that using the falling edge of the signal leads to more accurate period estimates than the rising edge, and that for certain signals interpolating the zero-level crossings can further increase accuracy. Our experiments find that the outstanding capabilities of the camera in detecting frequencies up to 64kHz for a single pixel do not carry over to full sensor imaging as readout bandwidth limitations become a serious obstacle. This suggests that a hardware implementation closer to the sensor will allow for greatly improved frequency imaging. We discuss the important design parameters for fullsensor frequency imaging and present Frequency Cam, an open-source implementation as a ROS node that can run on a single core of a laptop CPU at more than 50 million events per second. It produces results that are qualitatively very similar to those obtained from the closed source vibration analysis module in Prophesee's Metavision Toolkit. The code for Frequency Cam and a demonstration video can be found at https://github.com/berndpfrommer/frequency_cam

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源