论文标题
IC SN 2021KRF类型的近红外和光学观察:发光的晚期发射和灰尘形成
Near-Infrared and Optical Observations of Type Ic SN 2021krf: Luminous Late-time Emission and Dust Formation
论文作者
论文摘要
我们介绍了IC超新星(SNIC)SN 2021KRF的近红外(NIR)和光学观察,该2021KRF在几个地面望远镜的第13至259天之间获得。在第68天的NIR Spectrum展示了$ K $ -Band Continuum continuum通量密度$ \ sim $ \ sim $ 2.0 $ $ m $ m,并且第259天的延迟光谱频谱显示出强烈的[o I] 6300和6364Å发射线不对称,均表明灰尘的含量,可能是sn eementa in Sn eementa in Sn eementa in sn Ementa的含量。我们估计碳晶尘的$ \ sim $ 2 $ \ times $ 10 $^{ - 5} $ m $ _ {\ odot} $和$ \ sim $ 900-1200 k的灰尘温度与这种上升的连续体相关,并暗示灰尘在Sn exta中形成。利用一维的多组辐射流体动力学斯特拉,我们提出了SN 2021KRF的两个退化祖细胞解决方案,其特征是C-O星质量为3.93和5.74 m $ $ _ {\ odot} $ 天)。在后期(70-300天)时,SN 2021kRF的光曲线下降的速度比$^{56} $ co放射性衰减的预期速度要慢得多。在较晚的SN频谱中缺乏H和HE线,表明弹出与偶然培养基的相互作用没有显着相互作用。我们以放射性衰减和额外的动力来源的组合以毫秒脉冲星的中央发动机的形式重现整个侧力光曲线,其磁场小于典型磁场的磁场。
We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising $K$-band continuum flux density longward of $\sim$ 2.0 $μ$m, and a late-time optical spectrum at day 259 shows strong [O I] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of $\sim$ 2 $\times$ 10$^{-5}$ M$_{\odot}$ and a dust temperature of $\sim$ 900 - 1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C-O star masses of 3.93 and 5.74 M$_{\odot}$, but with the same best-fit $^{56}$Ni mass of 0.11 M$_{\odot}$ for early times (0-70 days). At late times (70-300 days), optical light curves of SN 2021krf decline substantially more slowly than that expected from $^{56}$Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar.