论文标题
火星周围颗粒的GIGA年动力学演变
Giga-Year Dynamical Evolution of Particles Around Mars
论文作者
论文摘要
火星周围可能存在各种尺寸的颗粒。大颗粒的轨道主要由火星重力支配,而小颗粒的轨道可能会受到非重力力的显着影响。先前对火星粒子动力学的许多研究都集中在相对较小的颗粒(半径为$ r _ {\ rm p} \ lyseSim 100 \,μm$)上,以$ \ lyseSim 10^{4} $年。在本文中,使用直接的数值轨道整合和分析方法,我们考虑火星重力,火星$ j_ {2} $,太阳辐射压力(SRP)和Poynting-Robertson(PR)力量,以研究粒子在Martian Aquius the Martias Aquius the Martakorator equius the Radius aftius the radius frow sick rangius frow sick ranger to smirtoper to smirter to s米的GIGA年度动力学进化。我们还新研究行星阴影对粒子动力学的影响。我们的结果表明,最初以$ \ lyssim 8 $ Martian Radii(今天的Deimos的轨道低于Martim Radii($ r _ {\ rm p} \ Lessim 10 \,μm$)的小颗粒(SRP下方)因怪异而迅速消除,因为偏心率会增加,导致与Mars在Mars Perencerence Distnace碰撞。由于PR力($> 10^{4} $年),较大颗粒的轨道($ r _ {\ rm p}> 10 \,μm$)慢慢衰减。行星阴影减少了轨道中的阳光区域,因此PR阻力的效率降低了。但是,我们表明,即使包括行星阴影,粒子也达到了$ \ sim 10 $ cm的半径,最初是在$ \ sillsim 8 $ martian Radii上,最终在$ \ sim 10^{9} $年内螺旋式螺旋式螺旋。较小的颗粒需要更少的时间才能到达火星,反之亦然。我们的结果对于更好地理解和约束火星周围其余粒子的性质将很重要,这是对Phobos和Deimos形成的巨大影响假设的背景。
Particles of various sizes can exist around Mars. The orbits of large particles are mainly governed by Martian gravity, while those of small particles could be significantly affected by non-gravitational forces. Many of the previous studies of particle dynamics around Mars have focused on relatively small particles (radius of $r_{\rm p} \lesssim 100 \, μm$) for $\lesssim 10^{4}$ years. In this paper, using direct numerical orbital integration and analytical approaches, we consider Martian gravity, Martian $J_{2}$, the solar radiation pressure (SRP) and the Poynting-Robertson (PR) force to study the giga-year dynamical evolution of particles orbiting near the Martian equatorial plane with radius ranging from micrometer to meter. We also newly study the effect of the planetary shadow upon the particle dynamics. Our results show that small particles ($r_{\rm p} \lesssim 10 \, μm$) initially at $\lesssim 8$ Martian radii (below the orbit of today's Deimos) are quickly removed by the SRP due to eccentricity increase, resulting in a collision with Mars at the pericenter distnace. The orbits of larger particles ($r_{\rm p} > 10 \, μm$) slowly decay due to the PR forces (timescale of $> 10^{4}$ years). The planetary shadow reduces the sunlit area in the orbit and thus the efficiency of the PR drag force is reduced. However, we show that, even including the planetary shadow, particles up to $\sim 10$ cm in radius, initially at $\lesssim 8$ Martian radii, eventually spiral onto the Martian surface within $\sim 10^{9}$ years. Smaller particles require less time to reach Mars, and vice versa. Our results would be important to better understand and constrain the nature of the remaining particle around Mars in a context of giant impact hypothesis for the formation of Phobos and Deimos.