论文标题
通过图形神经网络学习任务意识到有效的fMRI分析的大脑连接性
Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks
论文作者
论文摘要
功能磁共振成像(fMRI)已成为脑功能分析最常见的成像方式之一。最近,已经采用了图形神经网络(GNN),以表现出色的fMRI分析。不幸的是,传统的功能性脑网络主要是基于利益区域(ROI)之间的相似性构建的,这些区域对下游预测任务是嘈杂而不可知论的,并且基于GNN的模型可能会带来劣等的结果。为了更好地适应FMRI分析,我们提出了TBD,这是一个基于\ suespline {t} ask-ware \下划线{b}降雨连接性\ dain Connective \ deastline {d} ag(用于定向的acyc graph)\ supsection ac} s} tline {s} tructline {s} Tructure for Fmri分析的端到端框架。 TBD的关键组成部分是大脑网络生成器,该生成器采用DAG学习方法将原始时间序列转换为任务感知的大脑连接。此外,我们在大脑网络生成过程中设计了一个附加的对比正则化,以注入特定于任务的知识。对两个fMRI数据集进行的全面实验,即青春期脑认知发展(ABCD)和费城神经影像学者(PNC)数据集,证明了TBD的疗效。此外,生成的大脑网络还突出了与预测相关的大脑区域,因此提供了对预测结果的独特解释。我们的实施将在接受后发布到https://github.com/yueyu1030/tbds。
Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROI), which are noisy and agnostic to the downstream prediction tasks and can lead to inferior results for GNN-based models. To better adapt GNNs for fMRI analysis, we propose TBDS, an end-to-end framework based on \underline{T}ask-aware \underline{B}rain connectivity \underline{D}AG (short for Directed Acyclic Graph) \underline{S}tructure generation for fMRI analysis. The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities. Besides, we design an additional contrastive regularization to inject task-specific knowledge during the brain network generation process. Comprehensive experiments on two fMRI datasets, namely Adolescent Brain Cognitive Development (ABCD) and Philadelphia Neuroimaging Cohort (PNC) datasets demonstrate the efficacy of TBDS. In addition, the generated brain networks also highlight the prediction-related brain regions and thus provide unique interpretations of the prediction results. Our implementation will be published to https://github.com/yueyu1030/TBDS upon acceptance.