论文标题

$ \ Mathcal {pt} $的推导 - 对称正弦 - 戈登模型及其与非平衡的相关性

Derivation of $\mathcal{PT}$-symmetric Sine-Gordon model and its relevance to non-equilibrium

论文作者

Kulkarni, Vinayak M

论文摘要

均等$ \ MATHCAL {pt} $ - 对称的非亚米特正弦 - 戈登(NHSG)模型,这些模型来自非平衡旋转玻色子模型。我们为自旋算子提供了Keldysh旋转,可以从中得出SG模型。我们在Keldysh字段中执行重新归一化组的计算,并比较非平衡和非铁模型的有效耦合的固定点和流动。另外,我们明确地找到了自我能力,并比较了两种方法,以了解$ \ Mathcal {pt} $对称保留的制度,而非平衡制度则坚持不懈。

The Parity-Time $\mathcal{PT}$-symmetric non-Hermitian Sine-Gordon(nhSG) model derived from the nonequilibrium spin-boson model. We have derived the Keldysh rotation for spin operators, from which the SG model can be derived. We perform renormalization group calculations in the Keldysh fields and compare the fixed points and the flow of the effective couplings of nonequilibrium and non-Hermitian models. Also, we explicitly find the self-energies and compare the two methods to understand the regimes where $\mathcal{PT}$ symmetry preserved regime, and nonequilibrium regimes persist.RG flow of couplings of nonequilibrium model and non-hermitian model both capture the standard Berezinskii-Kosterlitz-Thouless(BKT) physics in a strong coupling regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源