论文标题
用交叉谐振脉冲驱动纠缠的参数化量子电路评估
Evaluation of Parameterized Quantum Circuits with Cross-Resonance Pulse-Driven Entanglers
论文作者
论文摘要
变性量子算法(VQAS)已成为一种强大的算法类别,非常适合嘈杂的量子设备。因此,研究其设计已成为量子计算研究的关键。先前的工作表明,选择有效的参数化量子电路(PQC)或ANSATZ进行VQA对其整体性能至关重要,尤其是在近期设备上。在本文中,我们利用对量子机的脉冲水平访问以及我们对它们两数量相互作用的理解,以适合VQAS的方式优化两Q Qubit的缠结器的设计。我们的分析结果表明,脉搏优化的ANSATZE将状态准备时间减少了一半以上,相对于标准PQC保持了明显的能力,并且通过局部成本函数分析更容易训练。我们的算法性能结果表明,在三种情况下,我们的PQC配置优于基本实现。我们在IBM量子硬件上执行的算法性能结果表明,与标准配置相比,我们的脉冲优化的PQC配置更能解决MaxCut和化学问题。
Variational Quantum Algorithms (VQAs) have emerged as a powerful class of algorithms that is highly suitable for noisy quantum devices. Therefore, investigating their design has become key in quantum computing research. Previous works have shown that choosing an effective parameterized quantum circuit (PQC) or ansatz for VQAs is crucial to their overall performance, especially on near-term devices. In this paper, we utilize pulse-level access to quantum machines and our understanding of their two-qubit interactions to optimize the design of two-qubit entanglers in a manner suitable for VQAs. Our analysis results show that pulse-optimized ansatze reduce state preparation times by more than half, maintain expressibility relative to standard PQCs, and are more trainable through local cost function analysis. Our algorithm performance results show that in three cases, our PQC configuration outperforms the base implementation. Our algorithm performance results, executed on IBM Quantum hardware, demonstrate that our pulse-optimized PQC configurations are more capable of solving MaxCut and Chemistry problems compared to a standard configuration.