论文标题
使用深度学习的通用二次嵌入非线性动力学
Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep Learning
论文作者
论文摘要
工程设计过程通常依赖于可以描述潜在动态行为的数学建模。在这项工作中,我们提出了一种数据驱动的方法,用于建模非线性系统的动力学。为了简化此任务,我们旨在确定一个坐标转换,使我们能够使用常见的简单模型结构来表示非线性系统的动力学。常见简单模型的优点是,为其开发的定制设计工具可以应用于研究各种非线性系统。最简单的通用模型 - 可以想到的 - 是线性的,但是线性系统通常会准确地捕获非线性系统的复杂动力学。在这项工作中,我们建议将二次系统作为共同结构,灵感来自提升原理。根据该原则,平滑的非线性系统可以表示为合适的坐标中的二次系统,而无需近似误差。但是,仅从数据中找到这些坐标是具有挑战性的。在这里,我们利用深度学习仅使用数据来识别此类提升的坐标,从而使二次动力系统能够描述系统的动力学。此外,我们讨论了这些二次动力学系统的渐近稳定性。我们使用从各种数值示例中收集的数据说明了这种方法,以证明其具有现有知名技术的出色性能。
The engineering design process often relies on mathematical modeling that can describe the underlying dynamic behavior. In this work, we present a data-driven methodology for modeling the dynamics of nonlinear systems. To simplify this task, we aim to identify a coordinate transformation that allows us to represent the dynamics of nonlinear systems using a common, simple model structure. The advantage of a common simple model is that customized design tools developed for it can be applied to study a large variety of nonlinear systems. The simplest common model -- one can think of -- is linear, but linear systems often fall short in accurately capturing the complex dynamics of nonlinear systems. In this work, we propose using quadratic systems as the common structure, inspired by the lifting principle. According to this principle, smooth nonlinear systems can be expressed as quadratic systems in suitable coordinates without approximation errors. However, finding these coordinates solely from data is challenging. Here, we leverage deep learning to identify such lifted coordinates using only data, enabling a quadratic dynamical system to describe the system's dynamics. Additionally, we discuss the asymptotic stability of these quadratic dynamical systems. We illustrate the approach using data collected from various numerical examples, demonstrating its superior performance with the existing well-known techniques.