论文标题

近距离近距离距离的接近线性内核

A Near-Linear Kernel for Two-Parsimony Distance

论文作者

Deen, Elise, van Iersel, Leo, Janssen, Remie, Jones, Mark, Murakami, Yuki, Zeh, Norbert

论文摘要

最大简约距离$ d _ {\ textrm {mp}}(t_1,t_2)$和有限状态的最大态度距离$ d _ {\ textrm {\ textrm {mp}}^t(t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t_1,t _ $ t $ a限制了字符中的状态数,在$ d _ {\ textrm {mp}}}}^t(t_1,t_2)$的情况下。虽然计算$ d _ {\ textrm {mp}}(t_1,t_2)$先前被证明是可与线性内核一起固定的参数,但没有以$ d _ {\ textrm {mp}}}}^t(t_1,t_1,t_2)$闻名的结果。在本文中,我们证明计算$ d _ {\ textrm {mp}}}^t(t_1,t_2)$是所有〜$ t $的固定参数。具体来说,我们证明此问题具有$ o(k \ lg k)$的内核,其中$ k = d _ {\ textrm {mp}}}^t(t_1,t_2)$。作为主要分析工具,我们介绍了腿部连接不相容的四重奏的概念,这可能引起了独立的兴趣。

The maximum parsimony distance $d_{\textrm{MP}}(T_1,T_2)$ and the bounded-state maximum parsimony distance $d_{\textrm{MP}}^t(T_1,T_2)$ measure the difference between two phylogenetic trees $T_1,T_2$ in terms of the maximum difference between their parsimony scores for any character (with $t$ a bound on the number of states in the character, in the case of $d_{\textrm{MP}}^t(T_1,T_2)$). While computing $d_{\textrm{MP}}(T_1, T_2)$ was previously shown to be fixed-parameter tractable with a linear kernel, no such result was known for $d_{\textrm{MP}}^t(T_1,T_2)$. In this paper, we prove that computing $d_{\textrm{MP}}^t(T_1, T_2)$ is fixed-parameter tractable for all~$t$. Specifically, we prove that this problem has a kernel of size $O(k \lg k)$, where $k = d_{\textrm{MP}}^t(T_1, T_2)$. As the primary analysis tool, we introduce the concept of leg-disjoint incompatible quartets, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源