论文标题

Glinkx:一个可扩展的统一框架,用于同粒和异质图

GLINKX: A Scalable Unified Framework For Homophilous and Heterophilous Graphs

论文作者

Papachristou, Marios, Goel, Rishab, Portman, Frank, Miller, Matthew, Jin, Rong

论文摘要

在图形学习中,关于图形启发的体系结构存在两个主要的归纳偏见:一方面,高阶相互作用和消息传递在同质图上很好地工作,并由GCN和GATS借用。但是,这样的体系结构无法轻易扩展到大型现实图形。另一方面,使用自我特征和邻接嵌入的浅(或节点级)模型在异性图中很好地工作。在这项工作中,我们提出了一种新型的可扩展浅方法 - glinkx-可以在同粒细胞和异质图上起作用。 Glinkx杠杆(i)新型的单个标签传播,(ii)自我/节点特征,(iii)知识图嵌入为位置嵌入,(iv)节点级训练和(v)低维信息传递。正式地,我们证明了新的误差界限并证明Glinkx的组成部分是合理的。在实验上,我们在几个同粒细胞和异质数据集上显示了它的有效性。

In graph learning, there have been two predominant inductive biases regarding graph-inspired architectures: On the one hand, higher-order interactions and message passing work well on homophilous graphs and are leveraged by GCNs and GATs. Such architectures, however, cannot easily scale to large real-world graphs. On the other hand, shallow (or node-level) models using ego features and adjacency embeddings work well in heterophilous graphs. In this work, we propose a novel scalable shallow method -- GLINKX -- that can work both on homophilous and heterophilous graphs. GLINKX leverages (i) novel monophilous label propagations, (ii) ego/node features, (iii) knowledge graph embeddings as positional embeddings, (iv) node-level training, and (v) low-dimensional message passing. Formally, we prove novel error bounds and justify the components of GLINKX. Experimentally, we show its effectiveness on several homophilous and heterophilous datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源