论文标题

微调的生成对抗网络基于医学图像超分辨率的模型

Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution

论文作者

Aghelan, Alireza, Rouhani, Modjtaba

论文摘要

在医学图像分析领域,需要高分辨率(HR)图像以提高诊断准确性。但是,获得人力资源医学图像是一项具有挑战性的任务,因为它需要高级工具和大量时间。基于深度学习的超分辨率方法可以帮助提高低分辨率(LR)医学图像的分辨率和感知质量。最近,基于生成的对抗网络(GAN)方法在基于深度学习的超分辨率方法中表现出色。实现的超分辨率生成对抗网络(Real-Esrgan)是一个实用模型,用于从现实世界LR图像中恢复HR图像。在我们提出的方法中,我们使用转移学习技术并使用医学图像数据集微调预培训的实体模型。该技术有助于提高模型的性能。我们采用了现实esrgan的高阶退化模型,该模型更好地模拟了现实世界的图像降解。这种适应可以产生更现实的降级医学图像,从而提高了性能。本文的重点是增强胸部X射线和视网膜图像的分辨率和感知质量。我们使用结核病胸部X射线(深圳)数据集和视网膜图像的凝视数据集进行微调。与真实模型相比,所提出的模型具有优异的感知质量,有效地保留了细节并生成具有更现实的纹理的图像。

In the field of medical image analysis, there is a substantial need for high-resolution (HR) images to improve diagnostic accuracy. However, it is a challenging task to obtain HR medical images, as it requires advanced instruments and significant time. Deep learning-based super-resolution methods can help to improve the resolution and perceptual quality of low-resolution (LR) medical images. Recently, Generative Adversarial Network (GAN) based methods have shown remarkable performance among deep learning-based super-resolution methods. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images. In our proposed approach, we use transfer learning technique and fine-tune the pre-trained Real-ESRGAN model using medical image datasets. This technique helps in improving the performance of the model. We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations. This adaptation allows for generating more realistic degraded medical images, resulting in improved performance. The focus of this paper is on enhancing the resolution and perceptual quality of chest X-ray and retinal images. We use the Tuberculosis chest X-ray (Shenzhen) dataset and the STARE dataset of retinal images for fine-tuning the model. The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源