论文标题
LARO:学习的采集和重建优化,以加速定量易感映射
LARO: Learned Acquisition and Reconstruction Optimization to accelerate Quantitative Susceptibility Mapping
论文作者
论文摘要
定量敏感性映射(QSM)涉及在多回波时间点的一系列图像的获取和重建以估计组织场,从而延长了扫描时间并需要特定的重建技术。在本文中,我们介绍了我们的新框架,称为学习的采集和重建优化(LARO),旨在加速QSM的多回波梯度回声(MGRE)脉冲序列。我们的方法涉及通过深层重建网络优化笛卡尔多回声K空间采样模式。接下来,使用笛卡尔风扇梁k空间分段和前瞻性扫描订购以MGRE序列实现了这种优化的采样模式。此外,我们建议将经常性的时间特征融合模块插入重建网络中,以捕获沿回声时间的信号冗余。我们的消融研究表明,优化的采样模式和提出的重建策略都有助于提高多回声图像重建的质量。概括实验表明,LARO在具有新的病理和不同序列参数的测试数据上具有鲁棒性。我们的代码可在https://github.com/jinwei1209/laro.git上找到。
Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of a series of images at multi-echo time points to estimate tissue field, which prolongs scan time and requires specific reconstruction technique. In this paper, we present our new framework, called Learned Acquisition and Reconstruction Optimization (LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM. Our approach involves optimizing a Cartesian multi-echo k-space sampling pattern with a deep reconstruction network. Next, this optimized sampling pattern was implemented in an mGRE sequence using Cartesian fan-beam k-space segmenting and ordering for prospective scans. Furthermore, we propose to insert a recurrent temporal feature fusion module into the reconstruction network to capture signal redundancies along echo time. Our ablation studies show that both the optimized sampling pattern and proposed reconstruction strategy help improve the quality of the multi-echo image reconstructions. Generalization experiments show that LARO is robust on the test data with new pathologies and different sequence parameters. Our code is available at https://github.com/Jinwei1209/LARO.git.