论文标题
气泡流场:用于评估超声定位显微镜算法的模拟框架
BUbble Flow Field: a Simulation Framework for Evaluating Ultrasound Localization Microscopy Algorithms
论文作者
论文摘要
超声对比度增强成像已在研究和临床诊断成像中广泛吸收。这包括诸如矢量流成像,功能性超声和超声超声定位显微镜(ULM)之类的应用。所有这些都需要在开发具有地面真相数据的新算法期间进行测试和验证。在这项工作中,我们提出了一个全面的仿真平台气泡流场(BUFF),该平台在血管树几何形状中生成对比度增强的超声图像,具有逼真的流量特性和ULM验证算法。 Buff允许随机和用户定义的血管网络复杂的微血管网络生成。用快速的计算流体动力学(CFD)求解器模拟血流,并允许任意输入和输出位置以及自定义压力。声场模拟与非线性微气泡(MB)动力学结合使用,并基于用户定义的MB特性模拟一系列点扩散函数。该验证结合了二进制和定量指标。 BFF通过在国际电气和电子工程师(IEEE)的International Ultrasonics研讨会(IUS)2022中的超声分辨率(IUS)2022中的超声本地化和跟踪算法(超声分辨率(Ultra-SR)挑战)中实现了其生成和验证用户定义的网络的能力。产生ULM图像的能力以及在本地化和跟踪中的地面真相的可用性,可以对现场开发的大量本地化和跟踪算法进行客观和定量评估。 Buff还可以通过自动生成用于培训的数据集来使基于深度学习的方法受益。 Buff是一个全面的模拟平台,用于测试和验证新型ULM技术,并且是开源的。
Ultrasound contrast enhanced imaging has seen widespread uptake in research and clinical diagnostic imaging. This includes applications such as vector flow imaging, functional ultrasound and super-resolution Ultrasound Localization Microscopy (ULM). All of these require testing and validation during development of new algorithms with ground truth data. In this work we present a comprehensive simulation platform BUbble Flow Field (BUFF) that generates contrast enhanced ultrasound images in vascular tree geometries with realistic flow characteristics and validation algorithms for ULM. BUFF allows complex micro-vascular network generation of random and user-defined vascular networks. Blood flow is simulated with a fast Computational Fluid Dynamics (CFD) solver and allows arbitrary input and output positions and custom pressures. The acoustic field simulation is combined with non-linear Microbubble (MB) dynamics and simulates a range of point spread functions based on user-defined MB characteristics. The validation combines both binary and quantitative metrics. BFF's capacity to generate and validate user-defined networks is demonstrated through its implementation in the Ultrasound Localisation and TRacking Algorithms for Super Resolution (ULTRA-SR) Challenge at the International Ultrasonics Symposium (IUS) 2022 of the Institute of Electrical and Electronics Engineers (IEEE). The ability to produce ULM images, and the availability of a ground truth in localisation and tracking enables objective and quantitative evaluation of the large number of localisation and tracking algorithms developed in the field. BUFF can also benefit deep learning based methods by automatically generating datasets for training. BUFF is a fully comprehensive simulation platform for testing and validation of novel ULM techniques and is open source.