论文标题

具体得分匹配:离散数据的广义分数匹配

Concrete Score Matching: Generalized Score Matching for Discrete Data

论文作者

Meng, Chenlin, Choi, Kristy, Song, Jiaming, Ermon, Stefano

论文摘要

事实证明,通过其密度函数的梯度代表概率分布已有效地建模广泛的连续数据模式。但是,此表示不适用于梯度未定义的离散域。为此,我们提出了一个称为“混凝土得分”的类似得分函数,这是离散设置(Stein)分数的概括。给定预定义的邻域结构,任何输入的混凝土得分是由概率的变化率相对于输入的局部方向变化而定义的。这种公式使我们能够在通过欧几里得距离测量这种变化时恢复连续域中的(Stein)得分,而使用曼哈顿距离会导致我们在离散域中的新分数函数。最后,我们引入了一个新的框架,以从称为“混凝土得分匹配(CSM)”的样本中学习此类分数,并提出了一个有效的培训目标,以扩展我们的高维度方法。从经验上讲,我们证明了CSM对综合,表格和高维图像数据集的混合物的密度估计任务的功效,并证明其相对于现有的基线对离散数据进行建模。

Representing probability distributions by the gradient of their density functions has proven effective in modeling a wide range of continuous data modalities. However, this representation is not applicable in discrete domains where the gradient is undefined. To this end, we propose an analogous score function called the "Concrete score", a generalization of the (Stein) score for discrete settings. Given a predefined neighborhood structure, the Concrete score of any input is defined by the rate of change of the probabilities with respect to local directional changes of the input. This formulation allows us to recover the (Stein) score in continuous domains when measuring such changes by the Euclidean distance, while using the Manhattan distance leads to our novel score function in discrete domains. Finally, we introduce a new framework to learn such scores from samples called Concrete Score Matching (CSM), and propose an efficient training objective to scale our approach to high dimensions. Empirically, we demonstrate the efficacy of CSM on density estimation tasks on a mixture of synthetic, tabular, and high-dimensional image datasets, and demonstrate that it performs favorably relative to existing baselines for modeling discrete data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源