论文标题

通过旋转不变的自动编码器从无监督分类中洞悉云过程

Insight into cloud processes from unsupervised classification with a rotationally invariant autoencoder

论文作者

Kurihana, Takuya, Franke, James, Foster, Ian, Wang, Ziwei, Moyer, Elisabeth

论文摘要

云在地球的能源预算中起着至关重要的作用,其潜在变化是未来气候预测中最大的不确定性之一。但是,使用卫星观测来理解温暖气候下的云反馈,这受到现有云分类方案的简单性的阻碍,这些方案基于单像素云属性,而不是利用空间结构和纹理。计算机视觉的最新进展使您可以在不使用人类预先定义的标签的情况下分组不同的图像模式,从而提供了一种新颖的自动化云分类手段。这种无监督的学习方法允许发现未知气候与气候相关的云模式以及大型数据集的自动处理。我们在这里描述了使用此类方法生成新的AI驱动云分类地图集(AICCA),该方法在全球海洋上利用了22年和800吨的MODIS卫星观测。我们使用旋转不变的云聚类(RICC)方法将这些观测值分类为〜100 km空间分辨率的42个AI生成的云类标签。作为一个案例研究,我们使用AICCA检查了亚热带层表甲板的关键部分中云降低的最新发现,并表明这种变化伴随着云类别的强烈趋势。

Clouds play a critical role in the Earth's energy budget and their potential changes are one of the largest uncertainties in future climate projections. However, the use of satellite observations to understand cloud feedbacks in a warming climate has been hampered by the simplicity of existing cloud classification schemes, which are based on single-pixel cloud properties rather than utilizing spatial structures and textures. Recent advances in computer vision enable the grouping of different patterns of images without using human-predefined labels, providing a novel means of automated cloud classification. This unsupervised learning approach allows discovery of unknown climate-relevant cloud patterns, and the automated processing of large datasets. We describe here the use of such methods to generate a new AI-driven Cloud Classification Atlas (AICCA), which leverages 22 years and 800 terabytes of MODIS satellite observations over the global ocean. We use a rotation-invariant cloud clustering (RICC) method to classify those observations into 42 AI-generated cloud class labels at ~100 km spatial resolution. As a case study, we use AICCA to examine a recent finding of decreasing cloudiness in a critical part of the subtropical stratocumulus deck, and show that the change is accompanied by strong trends in cloud classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源