论文标题

重新思考几次学习的指标:从自适应多距离的角度来看

Rethinking the Metric in Few-shot Learning: From an Adaptive Multi-Distance Perspective

论文作者

Lai, Jinxiang, Yang, Siqian, Jiang, Guannan, Wang, Xi, Li, Yuxi, Jia, Zihui, Chen, Xiaochen, Liu, Jun, Gao, Bin-Bin, Zhang, Wei, Xie, Yuan, Wang, Chengjie

论文摘要

几乎没有射击的学习问题专注于识别几个标记的图像,识别看不见的课程。在最近的努力中,更多的关注是嵌入细颗粒的功能,而忽略了不同距离指标之间的关系。在本文中,我们首次研究了不同距离指标的贡献,并提出了一种自适应融合方案,从而在很少的射击分类中取得了重大改进。我们从信心总和的天真基线开始,并证明了利用不同距离指标的互补特性的必要性。通过在基线建立的它们之间找到竞争问题,我们提出一个自适应指标模块(AMM)将指标融合到度量预测融合和度量损坏融合中。前者鼓励相互补充,而后者通过多任务协作学习减轻指标竞争。基于AMM,我们设计了一些射击分类框架AMTNET,包括AMM和全球自适应损失(GAL),以共同优化了几个弹药任务和辅助自我监督任务,从而使嵌入式的功能更强大。在实验中,所提出的AMM的性能比NAIVE Metrics Fusion模块高2%,而我们的AMTNET在多个基准数据集上的最先进表现优于最先进的功能。

Few-shot learning problem focuses on recognizing unseen classes given a few labeled images. In recent effort, more attention is paid to fine-grained feature embedding, ignoring the relationship among different distance metrics. In this paper, for the first time, we investigate the contributions of different distance metrics, and propose an adaptive fusion scheme, bringing significant improvements in few-shot classification. We start from a naive baseline of confidence summation and demonstrate the necessity of exploiting the complementary property of different distance metrics. By finding the competition problem among them, built upon the baseline, we propose an Adaptive Metrics Module (AMM) to decouple metrics fusion into metric-prediction fusion and metric-losses fusion. The former encourages mutual complementary, while the latter alleviates metric competition via multi-task collaborative learning. Based on AMM, we design a few-shot classification framework AMTNet, including the AMM and the Global Adaptive Loss (GAL), to jointly optimize the few-shot task and auxiliary self-supervised task, making the embedding features more robust. In the experiment, the proposed AMM achieves 2% higher performance than the naive metrics fusion module, and our AMTNet outperforms the state-of-the-arts on multiple benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源