论文标题

发现假肺:使用神经扩散模型生成合成医学图像

Spot the fake lungs: Generating Synthetic Medical Images using Neural Diffusion Models

论文作者

Ali, Hazrat, Murad, Shafaq, Shah, Zubair

论文摘要

生成模型在综合医学图像中变得流行。最近,神经扩散模型证明了产生对象的光真实图像的潜力。但是,尚未探索它们产生医学图像的潜力。在这项工作中,我们探讨了使用神经扩散模型合成医学图像的可能性。首先,我们使用预先训练的dalle2模型从输入文本提示中生成肺X射线和CT图像。其次,我们使用3165 X射线图像训练稳定的扩散模型,并生成合成图像。我们通过定性分析评估综合图像数据,其中两个独立的放射科医生从生成的数据中随机将样品标记为真实,伪造或不确定。结果表明,使用扩散模型生成的图像可以翻译特征,这些特征与胸部X射线或CT图像中某些医疗状况非常特定。仔细调整模型可能是非常有希望的。据我们所知,这是使用神经扩散模型生成肺X射线和CT图像的首次尝试。这项工作旨在引入人工智能中的新维度进行医学成像。鉴于这是一个新主题,因此本文将作为研究界探索扩散模型的医学图像合成潜力的介绍和动机。我们已经在https://www.kaggle.com/datasets/hazrat/awesomelungs上发布了合成图像。

Generative models are becoming popular for the synthesis of medical images. Recently, neural diffusion models have demonstrated the potential to generate photo-realistic images of objects. However, their potential to generate medical images is not explored yet. In this work, we explore the possibilities of synthesis of medical images using neural diffusion models. First, we use a pre-trained DALLE2 model to generate lungs X-Ray and CT images from an input text prompt. Second, we train a stable diffusion model with 3165 X-Ray images and generate synthetic images. We evaluate the synthetic image data through a qualitative analysis where two independent radiologists label randomly chosen samples from the generated data as real, fake, or unsure. Results demonstrate that images generated with the diffusion model can translate characteristics that are otherwise very specific to certain medical conditions in chest X-Ray or CT images. Careful tuning of the model can be very promising. To the best of our knowledge, this is the first attempt to generate lungs X-Ray and CT images using neural diffusion models. This work aims to introduce a new dimension in artificial intelligence for medical imaging. Given that this is a new topic, the paper will serve as an introduction and motivation for the research community to explore the potential of diffusion models for medical image synthesis. We have released the synthetic images on https://www.kaggle.com/datasets/hazrat/awesomelungs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源