论文标题

算术上的cohen-二线捆绑包在皮卡德等均质品种上

Arithmetically Cohen--Macaulay bundles on homogeneous varieties of Picard rank one

论文作者

Nakayama, Yusuke

论文摘要

在本文中,我们研究了算术上的cohen--macaulay(ACM)捆绑包,上面是同质品种$ g/p $。的确,我们表征了Picard $ g/p $在最高权重方面排名第一的ACM捆绑包。 This is a generalization of the result on $G/P$ of classical types presented by Costa and Miró-Roig for type $A$, and Du, Fang, and Ren for types $B,C$ and $D$.结果,我们证明,在所有这样的$ g/p $上都存在有限的许多不可约的同质ACM捆绑包,直到扭曲线束。此外,我们在特定类型的特定类型类型的特定均质品种(例如Cayley Plane和Freudenthal品种)上得出了不可还原均质ACM捆绑的最高权重列表。

In this paper, we study arithmetically Cohen--Macaulay (ACM) bundles on homogeneous varieties $G/P$. Indeed we characterize the homogeneous ACM bundles on $G/P$ of Picard rank one in terms of highest weights. This is a generalization of the result on $G/P$ of classical types presented by Costa and Miró-Roig for type $A$, and Du, Fang, and Ren for types $B,C$ and $D$. As a consequence we prove that only finitely many irreducible homogeneous ACM bundles, up to twisting line bundles, exist over all such $G/P$. Moreover, we derive the list of the highest weights of the irreducible homogeneous ACM bundles on particular homogeneous varieties of exceptional types such as the Cayley Plane and the Freudenthal variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源