论文标题
瞬态近距离接触熔化的比例耦合数值方法
A scale-coupled numerical method for transient close-contact melting
论文作者
论文摘要
我们引入了一个数值工作流程,以基于时空有限元方法模拟和模拟瞬态闭合熔融过程。也就是说,我们旨在计算强制热源通过相变材料融化的速度。文献中发现的现有方法考虑了接触熔体膜中的热机械平衡,这导致热源的恒定熔融速度。但是,这种经典方法无法解释熔融速度将自身调整为平衡条件的瞬态效应。通过我们的贡献,我们得出了平面热源的瞬时熔化过程的模型。我们在求解固体材料中的热方程与更新熔化速度之间进行迭代循环。后者是根据热源附近的热通量计算的。加热物体的运动是通过称为虚拟区域剪切网格更新方法的移动网格策略来模拟的,该方法避免了重新结束,并且在表示单向运动方面特别有效。我们显示数值示例以验证我们的方法论并介绍两个应用程序场景,一个2D平面热熔化探针和2D热线切割机。
We introduce a numerical workflow to model and simulate transient close-contact melting processes based on the space-time finite element method. That is, we aim at computing the velocity at which a forced heat source melts through a phase-change material. Existing approaches found in the literature consider a thermo-mechanical equilibrium in the contact melt film, which results in a constant melting velocity of the heat source. This classical approach, however, cannot account for transient effects in which the melting velocity adjusts itself to equilibrium conditions. With our contribution, we derive a model for the transient melting process of a planar heat source. We iteratively cycle between solving for the heat equation in the solid material and updating the melting velocity. The latter is computed based on the heat flux in the vicinity of the heat source. The motion of the heated body is simulated via the moving mesh strategy referred to as the Virtual Region Shear-Slip Mesh Update Method, which avoids remeshing and is particularly efficient in representing unidirectional movement. We show numerical examples to validate our methodology and present two application scenarios, a 2D planar thermal melting probe and a 2D hot-wire cutting machine.