论文标题
X射线活性变化和星形行星相互作用候选HD 179949的冠状丰度
X-ray Activity Variations and Coronal Abundances of the Star-Planet Interaction candidate HD 179949
论文作者
论文摘要
我们对HD 179949的$ Chandra $ X射线数据进行了详细的光谱和计时分析,这是一个具有近距离巨型行星的恒星的典型示例,具有可能的星形行星相互作用(SPI)效果。我们发现相对于Anders&Grevesse(1989)的太阳光基线,并且比出色的光电球,我们发现低冠状$ a({\ rm fe})/a({\ rm h}){\ oft} 0.2 $。我们进一步发现,高第一电离潜力(FIP)元素的少量$ a({{\ rm o})/a({\ rm fe}){\ sillssim} 1 $,$ a({\ rm ne})/a({\ rm fe}){{\ rm fe}) n})/a({\ rm fe}){\ gg} 1,a({\ rm al})/a({\ rm fe}){\ sillesim} 10 $。我们估计该恒星的FIP偏置在$ \大约{-0.3} $ to $ { - 0.1} $的范围内,大于$ {\ sillesim} - 该类型的星星预期的$ {\ sillesim} - $ 0.5,但类似于托管近距离热固定木星的星星。我们在时间尺度上检测到明显的强度可变性,范围为100 s -10 ks,也证明了在1-10 ks的时间尺度上的光谱变异性。我们将$ chandra $通量测量结果与$ swift $和xmm-$ newton $测量结果结合在一起,以检测周期性,并确定主要信号与恒星极性旋转期息息相关,这与对电晕旋转杆的期望一致。我们还找到了在行星轨道频率和恒星极性旋转周期的频率下的周期性证据,这表明行星和恒星极之间存在磁连接。如果这些周期性代表SPI信号,则可能是由准连续形式的加热(例如磁场拉伸)而不是零星,热,冲动的耀斑样重新连接驱动的。
We carry out detailed spectral and timing analyses of the $Chandra$ X-ray data of HD 179949, a prototypical example of a star with a close-in giant planet with possible star-planet interaction (SPI) effects. We find a low coronal abundance $A({\rm Fe})/A({\rm H}){\approx}0.2$ relative to the solar photospheric baseline of Anders & Grevesse (1989), and significantly lower than the stellar photosphere as well. We further find low abundances of high First Ionization Potential (FIP) elements $A({\rm O})/A({\rm Fe}){\lesssim}1$, $A({\rm Ne})/A({\rm Fe}){\lesssim}0.1$, but with indications of higher abundances of $A({\rm N})/A({\rm Fe}){\gg}1, A({\rm Al})/A({\rm Fe}){\lesssim}10$. We estimate a FIP bias for this star in the range $\approx{-0.3}$ to ${-0.1}$, larger than the ${\lesssim}-$0.5 expected for stars of this type, but similar to stars hosting close-in hot Jupiters. We detect significant intensity variability over time scales ranging from 100 s - 10 ks, and also evidence for spectral variability over time scales of 1-10 ks. We combine the $Chandra$ flux measurements with $Swift$ and XMM-$Newton$ measurements to detect periodicities and determine that the dominant signal is tied to the stellar polar rotational period, consistent with expectations that the corona is rotational-pole dominated. We also find evidence for periodicity at both the planetary orbital frequency and at its beat frequency with the stellar polar rotational period, suggesting the presence of a magnetic connection between the planet and the stellar pole. If these periodicities represent an SPI signal, it is likely driven by a quasi-continuous form of heating (e.g., magnetic field stretching) rather than sporadic, hot, impulsive flare-like reconnections.