论文标题

计算Schreier套装的工会

Counting Unions of Schreier Sets

论文作者

Beanland, Kevin, Gorovoy, Dmitriy, Hodor, Jȩdrzej, Homza, Daniil

论文摘要

如果是非空的,则是一个正整数$ f $的子集是Schreier集合,而$ | f | \ leqslant \ min f $(以下$ | f | $是$ f $的基数)。对于每个正整数$ k $,我们将$ k \ mathcal {s} $定义为最多$ k $ schreier套件的所有工会的集合。另外,对于每个正整数$ n $,令$(k \ mathcal {s})^n $是$ k \ mathcal {s} $的所有集合,最大元素等于$ n $。众所周知,序列$(|(1 \ Mathcal {s})^n |)_ {n = 1}^\ infty $是fibbonacci序列。特别是,该序列满足线性复发。我们概括了此语句,即,我们表明序列$(|(k \ Mathcal {s})^n |)_ {n = 1}^\ infty $满足每个正$ k $的线性复发。

A subset of positive integers $F$ is a Schreier set if it is non-empty and $|F|\leqslant \min F$ (here $|F|$ is the cardinality of $F$). For each positive integer $k$, we define $k\mathcal{S}$ as the collection of all the unions of at most $k$ Schreier sets. Also, for each positive integer $n$, let $(k\mathcal{S})^n$ be the collection of all sets in $k\mathcal{S}$ with the maximum element equal to $n$. It is well-known that the sequence $(|(1\mathcal{S})^n|)_{n=1}^\infty$ is the Fibbonacci sequence. In particular, the sequence satisfies a linear recurrence. We generalize this statement, namely, we show that the sequence $(|(k\mathcal{S})^n|)_{n=1}^\infty$ satisfies a linear recurrence for every positive $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源