论文标题

推荐系统中具有标签校正的设备模型微调

On-Device Model Fine-Tuning with Label Correction in Recommender Systems

论文作者

Ding, Yucheng, Niu, Chaoyue, Wu, Fan, Tang, Shaojie, Lyu, Chengfei, Chen, Guihai

论文摘要

为了满足在线智能服务中低潜伏期,低成本和良好隐私的实际要求,越来越多的深度学习模型从云到移动设备中被卸载。为了进一步处理跨设备数据异质性,通常需要对每个用户的本地样本进行微调,然后才能实时推断。在这项工作中,我们专注于推荐系统中的基本点击率(CTR)预测任务,并研究如何有效,有效地执行对设备的微调。我们首先确定每个用户的本地CTR(即,在本地数据集中进行微调的阳性样品的比率)倾向于偏离全局CTR(即,所有用户在云上所有用户混合数据集中的阳性样品的比率)倾向于培训最初的模型)。我们进一步证明,这种CTR漂移问题使得对项目排名有害甚至有害。因此,我们提出了一种新型的标签校正方法,该方法要求每个用户在启用启用调查之前只能更改本地样品的标签,并且可以很好地使本地的CTR与全局CTR对齐。在三个数据集和五个CTR预测模型以及在线A/B测试结果的离线评估结果以及移动TAOBAO的在线测试结果证明了在设备微调中进行标签校正的必要性,并且在没有微调的情况下揭示了对基于云的学习的改进。

To meet the practical requirements of low latency, low cost, and good privacy in online intelligent services, more and more deep learning models are offloaded from the cloud to mobile devices. To further deal with cross-device data heterogeneity, the offloaded models normally need to be fine-tuned with each individual user's local samples before being put into real-time inference. In this work, we focus on the fundamental click-through rate (CTR) prediction task in recommender systems and study how to effectively and efficiently perform on-device fine-tuning. We first identify the bottleneck issue that each individual user's local CTR (i.e., the ratio of positive samples in the local dataset for fine-tuning) tends to deviate from the global CTR (i.e., the ratio of positive samples in all the users' mixed datasets on the cloud for training out the initial model). We further demonstrate that such a CTR drift problem makes on-device fine-tuning even harmful to item ranking. We thus propose a novel label correction method, which requires each user only to change the labels of the local samples ahead of on-device fine-tuning and can well align the locally prior CTR with the global CTR. The offline evaluation results over three datasets and five CTR prediction models as well as the online A/B testing results in Mobile Taobao demonstrate the necessity of label correction in on-device fine-tuning and also reveal the improvement over cloud-based learning without fine-tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源