论文标题

神经网络表示的人类对齐

Human alignment of neural network representations

论文作者

Muttenthaler, Lukas, Dippel, Jonas, Linhardt, Lorenz, Vandermeulen, Robert A., Kornblith, Simon

论文摘要

当今的计算机视觉模型在各种视觉任务中实现了人类或近人类水平的性能。但是,它们的体系结构,数据和学习算法在许多方面与产生人类视野的算法有所不同。在本文中,我们研究了影响神经网络所学的表示形式与行为反应推论的人类心理表征之间对齐的因素。我们发现,模型量表和体系结构基本上对与人类行为反应的一致性没有影响,而训练数据集和目标功能都具有更大的影响。这些发现在使用两个不同任务收集的人类相似性判断的三个数据集中是一致的。从一个数据集中从行为响应中学到的神经网络表示形式的线性变换显着改善了其他两个数据集中人类相似性判断的一致性。此外,我们发现某些人类概念(例如食物和动物)由神经网络代表性很好,而其他人(例如皇家或与体育有关的物体)却没有。总体而言,尽管接受了更大,更多样化的数据集训练的模型与仅在ImageNet上训练的模型获得更好的对齐方式,但我们的结果表明,单独的缩放不足以训练具有与人类使用的概念表示的神经网络相匹配的神经网络。

Today's computer vision models achieve human or near-human level performance across a wide variety of vision tasks. However, their architectures, data, and learning algorithms differ in numerous ways from those that give rise to human vision. In this paper, we investigate the factors that affect the alignment between the representations learned by neural networks and human mental representations inferred from behavioral responses. We find that model scale and architecture have essentially no effect on the alignment with human behavioral responses, whereas the training dataset and objective function both have a much larger impact. These findings are consistent across three datasets of human similarity judgments collected using two different tasks. Linear transformations of neural network representations learned from behavioral responses from one dataset substantially improve alignment with human similarity judgments on the other two datasets. In addition, we find that some human concepts such as food and animals are well-represented by neural networks whereas others such as royal or sports-related objects are not. Overall, although models trained on larger, more diverse datasets achieve better alignment with humans than models trained on ImageNet alone, our results indicate that scaling alone is unlikely to be sufficient to train neural networks with conceptual representations that match those used by humans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源