论文标题
偏置感知面膜检测数据集
Bias-Aware Face Mask Detection Dataset
论文作者
论文摘要
2019年12月,一个新颖的冠状病毒(Covid-19)在世界范围内如此迅速地传播,以至于许多国家不得不在公共区域制定强制性面具规则以减少病毒的传播。为了监控公众的依从性,研究人员旨在快速开发可以自动检测面孔的高效系统。但是,缺乏代表性和新颖的数据集被证明是最大的挑战。早期尝试收集面罩数据集的尝试并未考虑潜在的种族,性别和年龄偏见。因此,由此产生的模型对特定种族群体(例如亚洲或高加索人)表现出固有的偏见。在这项工作中,我们提供了一个新颖的面膜检测数据集,其中包含来自世界各地大流行期间在Twitter上发布的图像。与以前的数据集不同,提出的偏置感知面罩检测(BAFMD)数据集包含更多来自代表性不足的种族和年龄组的图像,以减轻面罩检测任务的问题。我们执行实验,以研究广泛使用的面膜检测数据集中的潜在偏差,并说明BAFMD数据集产生的模型具有更好的性能和概括能力。该数据集可在https://github.com/alpkant/bafmd上公开获取。
In December 2019, a novel coronavirus (COVID-19) spread so quickly around the world that many countries had to set mandatory face mask rules in public areas to reduce the transmission of the virus. To monitor public adherence, researchers aimed to rapidly develop efficient systems that can detect faces with masks automatically. However, the lack of representative and novel datasets proved to be the biggest challenge. Early attempts to collect face mask datasets did not account for potential race, gender, and age biases. Therefore, the resulting models show inherent biases toward specific race groups, such as Asian or Caucasian. In this work, we present a novel face mask detection dataset that contains images posted on Twitter during the pandemic from around the world. Unlike previous datasets, the proposed Bias-Aware Face Mask Detection (BAFMD) dataset contains more images from underrepresented race and age groups to mitigate the problem for the face mask detection task. We perform experiments to investigate potential biases in widely used face mask detection datasets and illustrate that the BAFMD dataset yields models with better performance and generalization ability. The dataset is publicly available at https://github.com/Alpkant/BAFMD.