论文标题
计算病理中聚集方法的聚集
An Aggregation of Aggregation Methods in Computational Pathology
论文作者
论文摘要
图像分析和机器学习算法在多吉吉像素全斜面图像(WSIS)上运行,通常会处理大量瓷砖(子图像),并且需要从图块中进行汇总预测以预测WSI-LEVEL标签。在本文中,我们介绍了有关各种类型的聚合方法的现有文献的评论,以帮助指导计算病理学领域的未来研究(CPATH)。我们提出了一个通用的CPATH工作流,该工作流程具有三种途径,这些途径考虑了多个级别和类型的数据以及计算的性质,以分析WSI进行预测建模。我们根据数据的上下文和表示,计算模块的特征和CPATH用例对聚合方法进行分类。我们根据多个实例学习的原理(也许是最常用的聚合方法)比较和对比不同的方法,涵盖了广泛的CPATH文献。为了提供公平的比较,我们考虑了一项特定的WSI级预测任务,并比较该任务的各种聚合方法。最后,我们以一般的目标和所需属性列表,总体上的汇总方法,各种方法的利弊,一些建议以及可能的未来方向。
Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions.