论文标题

贝叶斯非局部运算符回归(BNOR):具有不确定性量化的非本地模型的数据驱动学习框架

Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification

论文作者

Fan, Yiming, D'Elia, Marta, Yu, Yue, Najm, Habib N., Silling, Stewart

论文摘要

我们考虑对微尺度动力学和相互作用影响全球行为的异质材料进行建模的问题。在材料微观结构中存在异质性的情况下,通常是不切实际的,即使不是不可能的,可以对材料响应进行定量表征。这项工作的目的是在使用非局部模型时在材料响应预测中开发一个贝叶斯框架以进行不确定性定量(UQ)。我们的方法结合了非局部操作器回归(NOR)技术和贝叶斯推断。具体而言,我们使用马尔可夫链蒙特卡洛(MCMC)方法对非局部本构法的参数进行后验概率分布进行采样,以及相对于较高的保真度计算的相关建模差异。作为一种应用,我们考虑通过具有随机生成的微结构的一维异质棒的应力波传播。几个数值测试说明了构造,从而在非局部模型预测中实现了UQ。尽管非局部模型已成为均质化的流行手段,但以前尚未介绍其相对于高保真模型的统计校准。这项工作是在均质化背景下非本地模型差异的统计表征的第一步。

We consider the problem of modeling heterogeneous materials where micro-scale dynamics and interactions affect global behavior. In the presence of heterogeneities in material microstructure it is often impractical, if not impossible, to provide quantitative characterization of material response. The goal of this work is to develop a Bayesian framework for uncertainty quantification (UQ) in material response prediction when using nonlocal models. Our approach combines the nonlocal operator regression (NOR) technique and Bayesian inference. Specifically, we use a Markov chain Monte Carlo (MCMC) method to sample the posterior probability distribution on parameters involved in the nonlocal constitutive law, and associated modeling discrepancies relative to higher fidelity computations. As an application, we consider the propagation of stress waves through a one-dimensional heterogeneous bar with randomly generated microstructure. Several numerical tests illustrate the construction, enabling UQ in nonlocal model predictions. Although nonlocal models have become popular means for homogenization, their statistical calibration with respect to high-fidelity models has not been presented before. This work is a first step towards statistical characterization of nonlocal model discrepancy in the context of homogenization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源