论文标题

基于项目的变异自动编码器公平音乐推荐

Item-based Variational Auto-encoder for Fair Music Recommendation

论文作者

Park, Jinhyeok, Kim, Dain, Kim, Dongwoo

论文摘要

我们介绍了评估datachallenge的解决方案。评估datachallenge旨在考虑准确性,公平性和评估多样性,建立更现实的推荐系统。我们提出的系统基于基于项目的变分自动编码器(VAE)与贝叶斯个性化排名矩阵分解(BPRMF)之间的合奏。为了减轻流行的偏见,我们为每个受欢迎程度组使用一个基于物品的VAE,并具有额外的公平正规化。为了提出合理的建议,即使预测不准确,我们将推荐的BPRMF和基于项目的VAE的列表结合在一起。通过实验,我们证明了与基于用户的VAE相比,具有公平正则化的基于项目的VAE会大大降低受欢迎程度的偏差。基于项目的VAE和BPRMF之间的合奏使得前1项类似于地面真相,即使预测不准确。最后,我们根据我们从广泛的实验中的反思来提出一种“基于系数的方差公平”作为一种新的评估度量。

We present our solution for the EvalRS DataChallenge. The EvalRS DataChallenge aims to build a more realistic recommender system considering accuracy, fairness, and diversity in evaluation. Our proposed system is based on an ensemble between an item-based variational auto-encoder (VAE) and a Bayesian personalized ranking matrix factorization (BPRMF). To mitigate the bias in popularity, we use an item-based VAE for each popularity group with an additional fairness regularization. To make a reasonable recommendation even the predictions are inaccurate, we combine the recommended list of BPRMF and that of item-based VAE. Through the experiments, we demonstrate that the item-based VAE with fairness regularization significantly reduces popularity bias compared to the user-based VAE. The ensemble between the item-based VAE and BPRMF makes the top-1 item similar to the ground truth even the predictions are inaccurate. Finally, we propose a `Coefficient Variance based Fairness' as a novel evaluation metric based on our reflections from the extensive experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源