论文标题
上颌窦中旁叶异常的无监督异常检测
Unsupervised Anomaly Detection of Paranasal Anomalies in the Maxillary Sinus
论文作者
论文摘要
深度学习(DL)算法可用于从磁共振成像(MRI)中自动化偏党异常检测。但是,先前的工作依靠监督的学习技术来区分正常样本和异常样本。此方法限制了可以将异常分类为需要在训练数据中存在的异常的类型。此外,模型需要从正常和异常类别中进行许多数据点才能达到令人满意的分类性能。然而,经验丰富的临床医生可以在观察一些普通样品后将正常样品(健康上颌窦)和异常样品(异常上颌窦)分离。我们通过使用3D卷积自动编码器(CAE)及其变体(3D变化自动编码器(VAE)体系结构)学习健康上颌窦的分布来模仿临床医生的能力,并评估CAE和VAE的CAE和VAE。具体而言,我们将旁叶异常检测构成无监督的异常检测问题。因此,我们能够减少临床医生的标签工作,因为我们只在培训过程中使用健康的样本。此外,我们可以分类与训练分布不同的任何类型的异常。我们训练我们的3D CAE和VAE,使用L1重建损失来学习健康上颌鼻窦体积的潜在表示。在推断期间,我们使用重建误差来分类正常和异常上颌窦之间。我们从较大的头部和颈部MRI中提取亚卷,并分析不同视野对检测性能的影响。最后,我们报告哪些异常是使用我们的方法最容易和最难分类的。我们的结果表明,CAE和VAE的AUPRC分别为85%和80%,对MRI的无监督检测可行性。
Deep learning (DL) algorithms can be used to automate paranasal anomaly detection from Magnetic Resonance Imaging (MRI). However, previous works relied on supervised learning techniques to distinguish between normal and abnormal samples. This method limits the type of anomalies that can be classified as the anomalies need to be present in the training data. Further, many data points from normal and anomaly class are needed for the model to achieve satisfactory classification performance. However, experienced clinicians can segregate between normal samples (healthy maxillary sinus) and anomalous samples (anomalous maxillary sinus) after looking at a few normal samples. We mimic the clinicians ability by learning the distribution of healthy maxillary sinuses using a 3D convolutional auto-encoder (cAE) and its variant, a 3D variational autoencoder (VAE) architecture and evaluate cAE and VAE for this task. Concretely, we pose the paranasal anomaly detection as an unsupervised anomaly detection problem. Thereby, we are able to reduce the labelling effort of the clinicians as we only use healthy samples during training. Additionally, we can classify any type of anomaly that differs from the training distribution. We train our 3D cAE and VAE to learn a latent representation of healthy maxillary sinus volumes using L1 reconstruction loss. During inference, we use the reconstruction error to classify between normal and anomalous maxillary sinuses. We extract sub-volumes from larger head and neck MRIs and analyse the effect of different fields of view on the detection performance. Finally, we report which anomalies are easiest and hardest to classify using our approach. Our results demonstrate the feasibility of unsupervised detection of paranasal anomalies from MRIs with an AUPRC of 85% and 80% for cAE and VAE, respectively.