论文标题
机械运算符中未知错误的可解释建模和减少
Interpretable Modeling and Reduction of Unknown Errors in Mechanistic Operators
论文作者
论文摘要
关于成像物理学的先验知识提供了一个机械前向操作员,在图像重建中起着重要作用,尽管操作员中可能出现的错误可能会对重建解决方案产生负面影响。在这项工作中,我们建议将传统的机械前向操作员嵌入神经功能中,并专注于以可解释的方式建模和纠正其未知错误。这是通过有条件的生成模型来实现的,该模型由未知误差的给定机械运算符转换,这是由于潜在误差产生来源的自组织群集的潜在空间而产生的。一旦学习,可以在任何传统的基于优化的重建过程中使用生成模型代替固定的远期操作员,在这些过程中,与逆解决方案一起,可以最大程度地减少先前机械前向操作员中的误差,并发现了潜在的错误源。我们将提出的方法应用于从人体表面电位中重建心脏电势。在受控的仿真实验和体内实际数据实验中,我们证明了所提出的方法允许减少基于物理的前向操作员的误差,从而以提高精度提供了心脏表面电位的反重建。
Prior knowledge about the imaging physics provides a mechanistic forward operator that plays an important role in image reconstruction, although myriad sources of possible errors in the operator could negatively impact the reconstruction solutions. In this work, we propose to embed the traditional mechanistic forward operator inside a neural function, and focus on modeling and correcting its unknown errors in an interpretable manner. This is achieved by a conditional generative model that transforms a given mechanistic operator with unknown errors, arising from a latent space of self-organizing clusters of potential sources of error generation. Once learned, the generative model can be used in place of a fixed forward operator in any traditional optimization-based reconstruction process where, together with the inverse solution, the error in prior mechanistic forward operator can be minimized and the potential source of error uncovered. We apply the presented method to the reconstruction of heart electrical potential from body surface potential. In controlled simulation experiments and in-vivo real data experiments, we demonstrate that the presented method allowed reduction of errors in the physics-based forward operator and thereby delivered inverse reconstruction of heart-surface potential with increased accuracy.