论文标题

LHC物理学家的现代机器学习

Modern Machine Learning for LHC Physicists

论文作者

Plehn, Tilman, Butter, Anja, Dillon, Barry, Heimel, Theo, Krause, Claudius, Winterhalder, Ramon

论文摘要

根据观点,现代机器学习要么为粒子物理的数值方法提供前所未有的提升,要么正在改变我们使用大量复杂数据进行科学的方式。无论如何,对于年轻的研究人员来说,至关重要的是要掌握这一发展,并将最先进的方法和工具应用于所有LHC物理任务。这些讲义使学生对粒子物理学的基本知识以及对相关应用的机器学习充满热情。它们从LHC特定的动机和神经网络的非标准介绍开始,然后涵盖分类,无监督分类,生成网络,数据表示和反问题。定义大部分讨论的三个主题是统计定义的损失功能,不确定性和准确性。为了了解应用程序,注释包括理论LHC物理学的某些方面。所有示例都是从过去几年的粒子物理出版物中选择的,其中许多示例带有相应的教程。

Depending on the point of view, modern machine learning is either providing an unprecedented boost to the numerical methods of particle physics, or it is transforming the way we do science with vast amounts of complex data. In any case, it is crucial for young researchers to stay on top of this development and apply cutting-edge methods and tools to all LHC physics tasks. These lecture notes lead students with basic knowledge of particle physics and significant enthusiasm for machine learning to relevant applications. They start with an LHC-specific motivation and a non-standard introduction to neural networks and then cover classification, unsupervised classification, generative networks, data representations, and inverse problems. Three themes defining much of the discussion are statistically defined loss functions, uncertainties, and accuracy. To understand the applications, the notes include some aspects of theoretical LHC physics. All examples are chosen from particle physics publications of the last few years, and many of them come with corresponding tutorials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源