论文标题

使用EM使用皮质表面FMRI数据对大脑激活的快速贝叶斯估计

Fast Bayesian estimation of brain activation with cortical surface fMRI data using EM

论文作者

Spencer, Daniel A., Bolin, David, Mejia, Amanda F.

论文摘要

任务功能磁共振成像(fMRI)是一种神经影像学数据,用于识别在特定任务或刺激过程中激活大脑的区域。这些数据通常在所有数据位置上使用大量的单变量方法对这些数据进行建模,该方法以模型功率为代价忽略了空间依赖性。我们之前曾开发并验证了沿着大脑皮质表面的依赖关系的空间贝叶斯模型,以提高准确性和功率。该模型利用具有稀疏精度矩阵的随机部分微分方程空间先验,以允许对神经影像学文献中所见的空间依赖性激活进行适当的建模,从而大大增加模型功率。我们的原始实现依赖于集成嵌套拉普拉斯近似(INLA)的计算效率来克服分析高维fMRI数据的计算挑战,同时避免了与变异贝叶斯实施相关的问题。但是,这需要大量的内存资源,额外的软件和软件许可才能运行。在本文中,我们为通用线性模型开发了一种精确的贝叶斯分析方法,采用有效的期望最大化算法来找到对皮质表面fMRI数据的最大后验估计值。通过对基于皮质表面的fMRI数据的广泛仿真研究,我们将我们提出的方法与现有的INLA实现以及采用额外空间平滑的常规大规模单变量方法进行了比较。我们还将方法应用于人类Connectome项目的任务fMRI数据,并表明我们提出的实现与已验证的INLA实现产生了相似的结果。基于INLA和EM的实现都可以通过我们的开源Bayesfmri R软件包获得。

Task functional magnetic resonance imaging (fMRI) is a type of neuroimaging data used to identify areas of the brain that activate during specific tasks or stimuli. These data are conventionally modeled using a massive univariate approach across all data locations, which ignores spatial dependence at the cost of model power. We previously developed and validated a spatial Bayesian model leveraging dependencies along the cortical surface of the brain in order to improve accuracy and power. This model utilizes stochastic partial differential equation spatial priors with sparse precision matrices to allow for appropriate modeling of spatially-dependent activations seen in the neuroimaging literature, resulting in substantial increases in model power. Our original implementation relies on the computational efficiencies of the integrated nested Laplace approximation (INLA) to overcome the computational challenges of analyzing high-dimensional fMRI data while avoiding issues associated with variational Bayes implementations. However, this requires significant memory resources, extra software, and software licenses to run. In this article, we develop an exact Bayesian analysis method for the general linear model, employing an efficient expectation-maximization algorithm to find maximum a posteriori estimates of task-based regressors on cortical surface fMRI data. Through an extensive simulation study of cortical surface-based fMRI data, we compare our proposed method to the existing INLA implementation, as well as a conventional massive univariate approach employing ad-hoc spatial smoothing. We also apply the method to task fMRI data from the Human Connectome Project and show that our proposed implementation produces similar results to the validated INLA implementation. Both the INLA and EM-based implementations are available through our open-source BayesfMRI R package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源