论文标题
量子材料中无序图像数据的深度学习汉密尔顿人
Deep Learning Hamiltonians from Disordered Image Data in Quantum Materials
论文作者
论文摘要
图像探针实验的功能正在迅速扩展,提供了有关前所未有的长度和时间尺度的量子材料的新信息。许多这样的材料具有不均匀的电子特性,在可观察的表面上具有复杂的图案形成。这种丰富的空间结构包含有关相互作用,维度和混乱的信息 - 驱动模式形成的汉密尔顿的空间编码。机器学习中的图像识别技术是解释此类图像中空间关系中编码的信息的绝佳工具。在这里,我们开发了一个深度学习框架,以使用这些空间相关性中可用的丰富信息,以发现驱动模式的基础汉密尔顿人。我们首先在已知情况下审查该方法,并在VO2的薄膜上扫描近场光学显微镜。然后,我们将经过训练的卷积神经网络结构应用于不同的VO2膜的新光学显微镜图像,因为它通过金属 - 绝缘体过渡。我们发现,在过渡过程中,需要一种具有相互作用和随机场障碍的二维哈密顿量和随机场障碍。关于基础汉密尔顿基础的这种详细知识为使用模型通过例如量身定制的磁滞协议来控制模式形成的方式铺平了道路。我们还针对多标签分类器的结果介绍了基于分配的置信度度量,该措施不依赖对抗性训练。此外,我们提出了一个新的基于机器学习的标准,用于诊断物理系统与关键性的距离。
The capabilities of image probe experiments are rapidly expanding, providing new information about quantum materials on unprecedented length and time scales. Many such materials feature inhomogeneous electronic properties with intricate pattern formation on the observable surface. This rich spatial structure contains information about interactions, dimensionality, and disorder -- a spatial encoding of the Hamiltonian driving the pattern formation. Image recognition techniques from machine learning are an excellent tool for interpreting information encoded in the spatial relationships in such images. Here, we develop a deep learning framework for using the rich information available in these spatial correlations in order to discover the underlying Hamiltonian driving the patterns. We first vet the method on a known case, scanning near-field optical microscopy on a thin film of VO2. We then apply our trained convolutional neural network architecture to new optical microscope images of a different VO2 film as it goes through the metal-insulator transition. We find that a two-dimensional Hamiltonian with both interactions and random field disorder is required to explain the intricate, fractal intertwining of metal and insulator domains during the transition. This detailed knowledge about the underlying Hamiltonian paves the way to using the model to control the pattern formation via, e.g., tailored hysteresis protocols. We also introduce a distribution-based confidence measure on the results of a multi-label classifier, which does not rely on adversarial training. In addition, we propose a new machine learning based criterion for diagnosing a physical system's proximity to criticality.