论文标题

通过衍射数据反转的薄膜中极性和弹性纳米纹理的真实空间成像

Real-space imaging of polar and elastic nano-textures in thin films via inversion of diffraction data

论文作者

Shao, Ziming, Schnitzer, Noah, Ruf, Jacob, Gorobtsov, Oleg Y., Dai, Cheng, Goodge, Berit H., Yang, Tiannan, Nair, Hari, Stoica, Vlad A., Freeland, John W., Ruff, Jacob, Chen, Long-Qing, Schlom, Darrell G., Shen, Kyle M., Kourkoutis, Lena F., Singer, Andrej

论文摘要

在外延单晶薄膜中利用新兴纳米级的周期性是量子材料科学中令人兴奋的方向:限制和周期性扭曲引起新的特性。感兴趣的结构基序是铁弹性,铁电,多效和近期拓扑保护的磁化和极化纹理。迈向异质结构工程的关键一步是了解其纳米级结构,这是通过实际空间成像实现的。 X射线Bragg相干衍射成像可视化亚贵计的晶体位移,具有数十纳米的空间分辨率。但是,它仅限于在所有三个维度上限制在空间上的对象,并且需要高度连贯的类似激光X射线。在这里,我们通过开发对周期性晶格扭曲的真实空间成像来提高限制的限制:我们将迭代相检索算法与无监督的机器学习结合在一起,以将传统的X射线相对空间中的弥漫性散射映射到薄薄膜中的极性和弹性纹理中的真实空间图像中。我们首先在PBTIO3/SRTIO3超晶格中证明了我们的成像与已发表的相位模型计算一致。然后,我们可视化在CA2RUO4薄膜中的金属胰岛素过渡期间出现的应变诱导的铁弹性结构域。正常的莫特绝缘子没有同质地转化为低温结构(例如散装),而是用交替的晶格常数分裂成纳米域,如低温扫描透射透射电子显微镜所证实。我们的研究揭示了纳米纹理的类型,大小,方向和晶体位移场。纹理的非破坏性成像有望改善其动力学模型,并在量子材料和微电子学方面取得进步。

Exploiting the emerging nanoscale periodicities in epitaxial, single-crystal thin films is an exciting direction in quantum materials science: confinement and periodic distortions induce novel properties. The structural motifs of interest are ferroelastic, ferroelectric, multiferroic, and, more recently, topologically protected magnetization and polarization textures. A critical step towards heterostructure engineering is understanding their nanoscale structure, best achieved through real-space imaging. X-ray Bragg coherent diffractive imaging visualizes sub-picometer crystalline displacements with tens of nanometers spatial resolution. Yet, it is limited to objects spatially confined in all three dimensions and requires highly coherent, laser-like x-rays. Here we lift the confinement restriction by developing real-space imaging of periodic lattice distortions: we combine an iterative phase retrieval algorithm with unsupervised machine learning to invert the diffuse scattering in conventional x-ray reciprocal-space mapping into real-space images of polar and elastic textures in thin epitaxial films. We first demonstrate our imaging in PbTiO3/SrTiO3 superlattices to be consistent with published phase-field model calculations. We then visualize strain-induced ferroelastic domains emerging during the metal-insulator transition in Ca2RuO4 thin films. Instead of homogeneously transforming into a low-temperature structure (like in bulk), the strained Mott insulator splits into nanodomains with alternating lattice constants, as confirmed by cryogenic scanning transmission electron microscopy. Our study reveals the type, size, orientation, and crystal displacement field of the nano-textures. The non-destructive imaging of textures promises to improve models for their dynamics and enable advances in quantum materials and microelectronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源