论文标题
部分可观测时空混沌系统的无模型预测
Crime Prediction using Machine Learning with a Novel Crime Dataset
论文作者
论文摘要
犯罪是一种非法行为,会带来法律影响。由于贫困,人口增长和许多其他社会经济问题,孟加拉国的犯罪率很高。对于执法机构而言,了解犯罪模式对于防止未来的犯罪活动至关重要。为此,这些机构需要结构化犯罪数据库。本文介绍了一个新颖的犯罪数据集,其中包含有关孟加拉国6574起犯罪事件的时间,地理,天气和人口数据。我们手动从每日报纸档案中手动收集了七年时间的犯罪新闻文章。我们从这些原始文本中提取基本功能。然后,我们使用这些基本功能,咨询地理位置和天气数据的标准服务支持者,以获取与收集到的犯罪事件有关的这些信息。此外,我们从孟加拉国国家人口普查数据收集人口统计信息。将所有这些信息组合在一起,从而导致标准的机器学习数据集。共同为犯罪预测任务设计了36个功能。然后在此新构建的数据集上评估了五种监督的机器学习分类算法,并实现了令人满意的结果。我们还对数据集的各个方面进行了探索性分析。预计该数据集将作为孟加拉国和其他国家的犯罪发生率预测系统的基础。这项研究的结果将有助于执法机构预测和遏制犯罪,并确保为犯罪巡逻和预防提供最佳资源。
Crime is an unlawful act that carries legal repercussions. Bangladesh has a high crime rate due to poverty, population growth, and many other socio-economic issues. For law enforcement agencies, understanding crime patterns is essential for preventing future criminal activity. For this purpose, these agencies need structured crime database. This paper introduces a novel crime dataset that contains temporal, geographic, weather, and demographic data about 6574 crime incidents of Bangladesh. We manually gather crime news articles of a seven year time span from a daily newspaper archive. We extract basic features from these raw text. Using these basic features, we then consult standard service-providers of geo-location and weather data in order to garner these information related to the collected crime incidents. Furthermore, we collect demographic information from Bangladesh National Census data. All these information are combined that results in a standard machine learning dataset. Together, 36 features are engineered for the crime prediction task. Five supervised machine learning classification algorithms are then evaluated on this newly built dataset and satisfactory results are achieved. We also conduct exploratory analysis on various aspects the dataset. This dataset is expected to serve as the foundation for crime incidence prediction systems for Bangladesh and other countries. The findings of this study will help law enforcement agencies to forecast and contain crime as well as to ensure optimal resource allocation for crime patrol and prevention.