论文标题

Quasilinear P.D.ES,插值空间和Hölderian映射

Quasilinear P.D.Es, Interpolation spaces and Hölderian mappings

论文作者

Ahmed, Irshaad, Fiorenza, Alberto, Formica, Maria Rosaria, Gogatishvili, Amiran, Hamidi, Abdallah El, Rakotoson, Jean Michel

论文摘要

就像塔塔尔(Tartar)的工作一样(塔塔尔(Tartar L. L.)插值非上亚利亚(Noninéaire)等人,9,功能分析杂志,(1972年),第469-489页),我们在这里开发了一些新的结果,这些结果涉及$α$-hölderian映射的$α$-höldermappaces的非线性插值,是在常规的空间之间的互动之间的互动,即$ knterp in the $ k $ k $ k $ k $ k k.对数函数。我们将这些结果应用于解决方案的梯度上的规律性结果,以$ $$ -div(\ wideHat a(\ nabla u))+v(u)= f,$ v $是非线性潜力,$ f $ a $ f $ a以lorentz-zygmund space的非标准空间。我们还表明,在适当的值$α$的情况下,映射$ t:\ tf = \ nabla u $是本地或全球$α$-Hölderian,以及$ v $和$ \ widehat a的适当假设。

As in the work of Tartar ( Tartar L. Interpolation non linéaire et régularité, 9, Journal of Functional Analysis, (1972), 469-489) we developed here some new results on non linear interpolation of $α$-Hölderian mappings between normed spaces, namely, by studying the action of the mappings on $K$-functionals and between interpolation spaces with logarithm functors. We apply those results to obtain regularity results on the gradient of the solution to quasilinear equations of the form $$-div(\widehat a(\nabla u ))+V(u)=f, $$ whenever $V$ is a nonlinear potential, $f$ belongs to non standard spaces as Lorentz-Zygmund spaces. We show among other that the mapping $T: \ Tf=\nabla u$ is locally or globally $α$-Hölderian under suitable values of $α$ and adequate hypothesis on $V$ and $\widehat a.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源