论文标题
与卷积神经网络的量子相似性测试
Quantum Similarity Testing with Convolutional Neural Networks
论文作者
论文摘要
测试两个未表征的量子设备是否以相同方式行为的任务对于对近期量子计算机和量子模拟器进行基准测试至关重要,但是到目前为止,对于连续变化的量子系统仍未开放。在这封信中,我们开发了一种机器学习算法,用于使用有限和嘈杂的数据比较未知的连续变量状态。该算法在非高斯量子状态下起作用,以前的技术无法实现相似性测试。我们的方法基于卷积神经网络,该网络根据测量数据构建的较低维状态表示量子状态的相似性。可以通过基于待测试的状态或通过基准状态上的测量结果或模拟和实验数据的组合产生的实验数据的一组基准状态的一组基集的状态或与实验数据共享结构相似性的基本状态的经典模拟数据进行训练。我们测试模型在嘈杂的猫状态和由任意选择性依赖性相位门产生的状态上的性能。我们的网络还可以应用于将不同实验平台之间的连续变量状态以及可实现的测量集进行比较的问题,以及实验测试两个状态是否等于高斯单位变换的问题。
The task of testing whether two uncharacterized quantum devices behave in the same way is crucial for benchmarking near-term quantum computers and quantum simulators, but has so far remained open for continuous-variable quantum systems. In this Letter, we develop a machine learning algorithm for comparing unknown continuous variable states using limited and noisy data. The algorithm works on non-Gaussian quantum states for which similarity testing could not be achieved with previous techniques. Our approach is based on a convolutional neural network that assesses the similarity of quantum states based on a lower-dimensional state representation built from measurement data. The network can be trained offline with classically simulated data from a fiducial set of states sharing structural similarities with the states to be tested, or with experimental data generated by measurements on the fiducial states, or with a combination of simulated and experimental data. We test the performance of the model on noisy cat states and states generated by arbitrary selective number-dependent phase gates. Our network can also be applied to the problem of comparing continuous variable states across different experimental platforms, with different sets of achievable measurements, and to the problem of experimentally testing whether two states are equivalent up to Gaussian unitary transformations.