论文标题

圆形和两次化以进行顶点盖近似

Round and Bipartize for Vertex Cover Approximation

论文作者

Kashaev, Danish, Schäfer, Guido

论文摘要

顶点覆盖问题是一个基本且经过广泛研究的组合优化问题。众所周知,其标准线性编程松弛是两部分图的组成部分,而对于一般图形来说,这是一半综合图。结果,基于此松弛的天然圆形算法计算了两部分图的最佳解决方案,并为一般图的$ 2 $ approximation计算。这就提出了一个问题,即是否可以以最差的方式插入标准线性编程放松的圆形曲线,这取决于图与两分的距离。在本文中,我们考虑了一种简单的圆形算法,该算法利用了诱导的两分子图的知识来提高近似值。等效地,我们假设我们与一对$(g,s)$一起工作,由具有奇数循环横向的图组成。 如果$ s $是稳定的集合,我们证明$ 1 + 1 /ρ$的紧密近似值,其中$2ρ-1$表示合同图形的奇数(即,最短奇数周期的长度)$ \ tilde $ \ tilde {g}:= g /s $和满足$ρph.2,in [2,\ infty] $。如果$ s $是任意集,我们证明$ \左(1 + 1/ρ\右)的紧密近似值(1-α) +2α$,其中$α\ in [0,1] $是一个自然参数,测量了集合$ s $的质量。用于证明紧密改善的近似比的技术依赖于合同图$ \ tilde {g} $的结构分析。通过构造与所获得的上限匹配的重量功能的类别显示,显示了紧密度。作为结构分析的副产品,我们在整数间隙和3色图的分数色差上获得了改善的紧密界限。我们还讨论了算法应用程序,以找到良好的奇数循环横向并显示出分析的最佳性。

The vertex cover problem is a fundamental and widely studied combinatorial optimization problem. It is known that its standard linear programming relaxation is integral for bipartite graphs and half-integral for general graphs. As a consequence, the natural rounding algorithm based on this relaxation computes an optimal solution for bipartite graphs and a $2$-approximation for general graphs. This raises the question of whether one can interpolate the rounding curve of the standard linear programming relaxation in a beyond the worst-case manner, depending on how close the graph is to being bipartite. In this paper, we consider a simple rounding algorithm that exploits the knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently, we suppose that we work with a pair $(G, S)$, consisting of a graph with an odd cycle transversal. If $S$ is a stable set, we prove a tight approximation ratio of $1 + 1/ρ$, where $2ρ-1$ denotes the odd girth (i.e., length of the shortest odd cycle) of the contracted graph $\tilde{G} := G /S$ and satisfies $ρ\in [2,\infty]$. If $S$ is an arbitrary set, we prove a tight approximation ratio of $\left(1+1/ρ\right) (1 - α) + 2 α$, where $α\in [0,1]$ is a natural parameter measuring the quality of the set $S$. The technique used to prove tight improved approximation ratios relies on a structural analysis of the contracted graph $\tilde{G}$. Tightness is shown by constructing classes of weight functions matching the obtained upper bounds. As a byproduct of the structural analysis, we obtain improved tight bounds on the integrality gap and the fractional chromatic number of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle transversals and show optimality of the analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源