论文标题

超越IOC:从外部CTI自动提取攻击模式

Looking Beyond IoCs: Automatically Extracting Attack Patterns from External CTI

论文作者

Alam, Md Tanvirul, Bhusal, Dipkamal, Park, Youngja, Rastogi, Nidhi

论文摘要

公共和商业组织广泛共享网络智能情报(CTI),以准备防御现有和新兴网络攻击的系统。但是,传统CTI主要集中于跟踪已知的威胁指标,例如IP地址和域名,这可能无法为防御不断发展的攻击提供长期价值。为了应对这一挑战,我们建议使用更强大的威胁智能信号称为攻击模式。梯子是一个知识提取框架,可以大规模从CTI报告中提取基于文本的攻击模式。该框架通过在Android和Enterprise网络中捕获攻击的阶段来表征攻击模式,并将其系统地映射到MITER ATT \&CK模式框架中。安全分析师可以使用梯子来确定与现有威胁和新兴威胁相关的攻击向量的存在,从而使他们能够主动准备防御措施。我们还提出了几种用例,以证明梯子在现实世界中的应用。最后,我们提供了一个新的开放式基准恶意软件数据集,以培训未来的网络智能智能模型。

Public and commercial organizations extensively share cyberthreat intelligence (CTI) to prepare systems to defend against existing and emerging cyberattacks. However, traditional CTI has primarily focused on tracking known threat indicators such as IP addresses and domain names, which may not provide long-term value in defending against evolving attacks. To address this challenge, we propose to use more robust threat intelligence signals called attack patterns. LADDER is a knowledge extraction framework that can extract text-based attack patterns from CTI reports at scale. The framework characterizes attack patterns by capturing the phases of an attack in Android and enterprise networks and systematically maps them to the MITRE ATT\&CK pattern framework. LADDER can be used by security analysts to determine the presence of attack vectors related to existing and emerging threats, enabling them to prepare defenses proactively. We also present several use cases to demonstrate the application of LADDER in real-world scenarios. Finally, we provide a new, open-access benchmark malware dataset to train future cyberthreat intelligence models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源