论文标题
数据驱动的抽象用于确定性系统的验证
Data-driven Abstractions for Verification of Deterministic Systems
论文作者
论文摘要
验证动态系统复杂逻辑规格的一种常见技术是符号抽象的构建:更简单的有限状态模型,其行为模仿了感兴趣的系统之一。通常,构造抽象来利用基本模型的准确知识:在现实生活中,这可能是一个昂贵的假设。通过对未知系统的随机$ \ ell $ step轨迹进行采样,我们基于$ \ ell $ completeness的概念构建了一个抽象。我们新定义了概率行为包容的概念,并提供了近似正确的(PAC)保证该抽象包括混凝土系统的所有行为,用于有限和无限的时间范围,并利用场景理论解决非凸问题。然后,我们的方法在几个数值基准上进行测试。
A common technique to verify complex logic specifications for dynamical systems is the construction of symbolic abstractions: simpler, finite-state models whose behaviour mimics the one of the systems of interest. Typically, abstractions are constructed exploiting an accurate knowledge of the underlying model: in real-life applications, this may be a costly assumption. By sampling random $\ell$-step trajectories of an unknown system, we build an abstraction based on the notion of $\ell$-completeness. We newly define the notion of probabilistic behavioural inclusion, and provide probably approximately correct (PAC) guarantees that this abstraction includes all behaviours of the concrete system, for finite and infinite time horizon, leveraging the scenario theory for non convex problems. Our method is then tested on several numerical benchmarks.