论文标题

发现一个新的井:带有轮廓可能性的暗物质

Discovering a new well: Decaying dark matter with profile likelihoods

论文作者

Holm, Emil Brinch, Herold, Laura, Hannestad, Steen, Nygaard, Andreas, Tram, Thomas

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A large number of studies, all using Bayesian parameter inference from Markov Chain Monte Carlo methods, have constrained the presence of a decaying dark matter component. All such studies find a strong preference for either very long-lived or very short-lived dark matter. However, in this letter, we demonstrate that this preference is due to parameter volume effects that drive the model towards the standard $Λ$CDM model, which is known to provide a good fit to most observational data. Using profile likelihoods, which are free from volume effects, we instead find that the best-fitting parameters are associated with an intermediate regime where around $3 \%$ of cold dark matter decays just prior to recombination. With two additional parameters, the model yields an overall preference over the $Λ$CDM model of $Δχ^2 \approx -2.8$ with \textit{Planck} and BAO and $Δχ^2 \approx -7.8$ with the SH0ES $H_0$ measurement, while only slightly alleviating the $H_0$ tension. Ultimately, our results reveal that decaying dark matter is more viable than previously assumed, and illustrate the dangers of relying exclusively on Bayesian parameter inference when analysing extensions to the $Λ$CDM model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源