论文标题
酒吧理论和3个manifolds中不可压缩表面之间的隧道
Bar-Natan theory and tunneling between incompressible surfaces in 3-manifolds
论文作者
论文摘要
作者为每个(交换)frobenius代数定义了一个在$ 3 $ -MANIFOLD $ M $中的绞线模块,限制了封闭的$ 1 $ -Manifold $ -Manifold $α\ subset \ subset \ subset \ partial m $。表面成分是由Frobenius代数的元素颜色的。这些模块称为$(M,α)$的Bar-Natan模块。在本文中,我们表明,Bar-natan模块是与Frobenius代数相关的函子的colimit模块,从代数分离了代数。函子定义在$ 3 $维压缩界的类别上,嵌入了$ m $的气缸中,并在Frobenius代数定义的线性类别中取值。研究了与$ 1+1 $二维拓扑量子场理论函数与Frobenius代数相关的关系。我们表明,绞线模块的几何含量包含在$(m,α)$的隧道图中,通过应用代数定义的函子,提供了bar-natan模块的自然表示。此类演讲基本上是用临时论点在作者和Asaeda-Frohman的工作中进行的。但是它们自然出现在Bar-Natan函子和相关的分类考虑的背景下。我们会根据分类环境中该类别的对象的最小终端集的最小终端集,在对模块类别中的Colimit模块的一般演示中讨论。我们还引入了$ 2 $ - 类别版本的Bar-Natan Foundor,从而以某种方式Bar-Natan模块为$(m,α)$。
The author defined for each (commutative) Frobenius algebra a skein module of surfaces in a $3$-manifold $M$ bounding a closed $1$-manifold $α\subset \partial M$. The surface components are colored by elements of the Frobenius algebra. The modules are called the Bar-Natan modules of $(M,α)$. In this article we show that Bar-Natan modules are colimit modules of functors associated to Frobenius algebras, decoupling topology from algebra. The functors are defined on a category of $3$-dimensional compression bordisms embedded in cylinders over $M$ and take values in a linear category defined from the Frobenius algebra. The relation with the $1+1$-dimensional topological quantum field theory functor associated to the Frobenius algebra is studied. We show that the geometric content of the skein modules is contained in a tunneling graph of $(M,α)$, providing a natural presentation of the Bar-Natan module by application of the functor defined from the algebra. Such presentations have essentially been stated previously in work by the author and Asaeda-Frohman, using ad-hoc arguments. But they appear naturally on the background of the Bar-Natan functor and associated categorical considerations. We discuss in general presentations of colimit modules for functors into module categories in terms of minimal terminal sets of objects of the category in the categorical setting. We also introduce a $2$-category version of the Bar-Natan functor, thereby in some way Bar-Natan modules of $(M,α)$.