论文标题

基于FullConv-TTS的有效训练的低资源蒙古文字到语音系统

Efficiently Trained Low-Resource Mongolian Text-to-Speech System Based On FullConv-TTS

论文作者

Liang, Ziqi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recurrent Neural Networks (RNNs) have become the standard modeling technique for sequence data, and are used in a number of novel text-to-speech models. However, training a TTS model including RNN components has certain requirements for GPU performance and takes a long time. In contrast, studies have shown that CNN-based sequence synthesis technology can greatly reduce training time in text-to-speech models while ensuring a certain performance due to its high parallelism. We propose a new text-to-speech system based on deep convolutional neural networks that does not employ any RNN components (recurrent units). At the same time, we improve the generality and robustness of our model through a series of data augmentation methods such as Time Warping, Frequency Mask, and Time Mask. The final experimental results show that the TTS model using only the CNN component can reduce the training time compared to the classic TTS models such as Tacotron while ensuring the quality of the synthesized speech.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源