论文标题
运动摄像头姿势改进使用进化策略
Sports Camera Pose Refinement Using an Evolution Strategy
论文作者
论文摘要
本文提出了一种使用新颖的进化策略优化运动相机外部参数的强大端到端方法。首先,我们开发了一种神经网络体系结构,用于运动场的基于边缘或区域的细分。其次,我们实施了进化策略,该策略的目的是在一个单个分段的运动场图像中完善外部摄像头参数。与现实世界中最新的相机姿势完善方法的实验比较证明了所提出的算法的优越性。我们还进行了消融研究,并提出了一种概括方法以概括固有摄像机矩阵的方法。
This paper presents a robust end-to-end method for sports cameras extrinsic parameters optimization using a novel evolution strategy. First, we developed a neural network architecture for an edge or area-based segmentation of a sports field. Secondly, we implemented the evolution strategy, which purpose is to refine extrinsic camera parameters given a single, segmented sports field image. Experimental comparison with state-of-the-art camera pose refinement methods on real-world data demonstrates the superiority of the proposed algorithm. We also perform an ablation study and propose a way to generalize the method to additionally refine the intrinsic camera matrix.