论文标题

使用SDO/HMI和BBSO数据生成SOHO/MDI太阳能活动区域的光电矢量磁力图的深度学习方法

A Deep Learning Approach to Generating Photospheric Vector Magnetograms of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data

论文作者

Jiang, Haodi, Li, Qin, Hu, Zhihang, Liu, Nian, Abduallah, Yasser, Jing, Ju, Zhang, Genwei, Xu, Yan, Hsu, Wynne, Wang, Jason T. L., Wang, Haimin

论文摘要

太阳活动通常是由太阳磁场的演变引起的。源自太阳活性区域的光球矢量磁图的磁场参数已用于分析和预测喷发事件,例如太阳耀斑和冠状质量弹出。不幸的是,最新的太阳周期24相对较弱,较大的耀斑却相对较弱,尽管这是唯一的太阳能周期,其中一致的时间序列磁力摄影图可以通过Helioseismiss和磁性成像器(HMI)获得太阳能动力学观测站(SDO)(SDO)自2010年发射以来,我们在本文中启动。从1996年到2010年,Heliosperic天文台(SOHO)。SOHO/MDI的数据存档涵盖了更多的活跃太阳周期23,并带有许多大型耀斑。但是,SOHO/MDI数据仅具有视线(LOS)磁力图。我们提出了一种名为Magnet的新的深度学习方法,旨在从BX的组合LOS磁力图中学习,并由SDO/HMI以及由Big Bear Solar天文台(BBSO)收集的H-Alpha观察结果,并生成矢量组件BX'和由'和'构成矢量磁力图与观察LOS数据一起形成矢量磁力图。通过这种方式,我们可以将矢量磁图的可用性扩展到1996年的时期。实验结果证明了该方法的良好性能。据我们所知,这是第一次使用SDO/HMI和H-Alpha数据为SOHO/MDI的太阳能活动区域生成光电矢量磁路图。

Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源