论文标题

$ f(\ MATHCAL {T},\ MATHCAL {B})$ f的偏转角,准模式和光学特性。

Deflection angle, quasinormal modes and optical properties of a de Sitter black hole in $f(\mathcal{T}, \mathcal{B})$ gravity

论文作者

Parbin, Nashiba, Gogoi, Dhruba Jyoti, Bora, Jyatsnasree, Goswami, Umananda Dev

论文摘要

当前的研究旨在检查边界项对$ f(\ MATHCAL {T},\ MATHCAL {B})$函数所描述的修饰的重力中静态对称黑洞的光角的影响。为了实现这一目标,我们采用了Ishihara \ textit {等}〜方法,它使我们能够计算接收器的光偏转角,并在非镜头平坦的时空中距离镜头对象有限距离处的光源。该方法考虑了接收器的观点,并且由于非质量平坦的时空,随着距离镜头对象的距离增加而产生的挠度角也有所不同。但是,差异可以通过边界项参数$ c_0 $来调节。对于较低的参数$ c_0 $的值,可以在观察者和源的有限范围内最大程度地减少差异。此外,我们使用渐近迭代方法(AIM)计算黑洞背景中无质量标量扰动的准模式(AIM),Padé平均平均第六阶Wentzel-kramers-brillouin(WKB)近似方法。我们的发现表明,实际的准模式和阻尼率受到模型参数$ C_0 $的影响。随后,我们研究了黑洞的两个光学特征,即阴影和发射速率。我们的结果表明,随着边界项参数$ C_0 $的增加,阴影的大小增加,并且蒸发率降低。

The current study aims to examine the impact of the boundary term on the bending angle of light for a static spherically symmetric black hole in the modified gravity described by the $f(\mathcal{T}, \mathcal{B})$ function. To accomplish this objective, we employ the Ishihara \textit{et al.}~method, which enables us to compute the deflection angle of light for a receiver and source situated at finite distances from a lens object in a non-asymptotically flat spacetime. This method considers the receiver's viewpoint, and the resulting deflection angle diverges as the distance from the lens object increases, owing to the non-asymptotically flat spacetime. Nevertheless, the divergence can be regulated by the boundary term parameter $c_0$. For lower values of the parameter $c_0$, the divergence can be minimized within the finite range of the observer and source. Furthermore, we calculate the quasinormal modes of massless scalar perturbations in the black hole's background using the asymptotic iteration method (AIM) and Padé averaged sixth-order Wentzel-Kramers-Brillouin (WKB) approximation method. Our findings indicate that the real quasinormal modes and damping rates are significantly impacted by the model parameter $c_0$. Subsequently, we investigate two optical characteristics of the black hole, namely the shadow and the emission rate. Our results show that with an increase in the boundary term parameter $c_0$, the shadow's size increases, and the evaporation rate decreases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源