论文标题

李班的分裂性的一家不变的家族

A family of slice-torus invariants from the divisibility of Lee classes

论文作者

Sano, Taketo, Sato, Kouki

论文摘要

我们给出了一个slice torus forpariants $ \ tilde {ss} _c $,每个都从$ c $ - 可降低的Lee类的$ c $ - 可定义性中定义,以降低的Khovanov同源性变体,在任何主要的主要理想域$ r $ r $中,由Prime Elements $ C $参数化。对于特殊情况$(r,c)=(f [h],h)$,其中$ f $是任何字段,我们证明$ \ tilde {ss} _C $与$ f $上的rasmussen不变性$ s^f $重合。与上一篇论文中第一作者定义的未恢复不变的$ ss_c $相比,我们证明$ ss_c = \ tilde {ss} _c $ for $(r,c)=(r,c)=(f [h],h),h)$ and $(\ mathbb {z},2)$。但是,对于$(r,c)=(\ mathbb {z},3)$,计算结果表明$ ss_3 $不是slice trice-torus,这意味着它与减少的不变式是线性独立的,尤其是与rasmussen不变的无关。

We give a family of slice-torus invariants $\tilde{ss}_c$, each defined from the $c$-divisibility of the reduced Lee class in a variant of reduced Khovanov homology, parameterized by prime elements $c$ in any principal ideal domain $R$. For the special case $(R, c) = (F[H], H)$ where $F$ is any field, we prove that $\tilde{ss}_c$ coincides with the Rasmussen invariant $s^F$ over $F$. Compared with the unreduced invariants $ss_c$ defined by the first author in a previous paper, we prove that $ss_c = \tilde{ss}_c$ for $(R, c) = (F[H], H)$ and $(\mathbb{Z}, 2)$. However for $(R, c) = (\mathbb{Z}, 3)$, computational results show that $ss_3$ is not slice-torus, which implies that it is linearly independent from the reduced invariants, and particularly from the Rasmussen invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源