论文标题

来自双方色带代数的Kronecker系数

Kronecker coefficients from algebras of bi-partite ribbon graphs

论文作者

Geloun, Joseph Ben, Ramgoolam, Sanjaye

论文摘要

在随机矩阵模型和随机张量模型中可观察物的枚举中,在组织大$ n $扩展相关器的大型$ n $扩展时出现了双方色带图。有一个代数$ \ MATHCAL {K}(N)$,其基础由带有$ N $边缘的Bi-Partite Ribbon图给出,这在矩阵和张量模型的应用程序中很有用。代数$ \ MATHCAL {K}(N)$与对称组代数密切相关,并且具有与Clebsch-Gordan多重性相关的基质块分解,也称为Kronecker系数,用于对称组表示。使用$ \ MATHCAL {K}(N)$作为Hilbert Space的量子机械模型可用于提供组合算法来计算Kronecker系数。

Bi-partite ribbon graphs arise in organising the large $N$ expansion of correlators in random matrix models and in the enumeration of observables in random tensor models. There is an algebra $\mathcal{K}(n)$, with basis given by bi-partite ribbon graphs with $n$ edges, which is useful in the applications to matrix and tensor models. The algebra $\mathcal{K}(n)$ is closely related to symmetric group algebras and has a matrix-block decomposition related to Clebsch-Gordan multiplicities, also known as Kronecker coefficients, for symmetric group representations. Quantum mechanical models which use $\mathcal{K}(n)$ as Hilbert spaces can be used to give combinatorial algorithms for computing the Kronecker coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源