论文标题
内部热源和水槽引起的对流热传输上的速度信息上限
Velocity-informed upper bounds on the convective heat transport induced by internal heat sources and sinks
论文作者
论文摘要
由内部热源和水槽驱动的三维对流(CISS)导致实验性和数值缩放法与混合长度 - 或“终极” - 缩放制度$ nu \ sim \ sim \ sqrt {ra} $兼容。但是,渐近分析溶液和理想化的2D模拟表明,层流解决方案可以通过$ NU \ sim ra $更有效地运输热量。因此,流动的湍流性质对其运输特性产生了深远的影响。在目前的贡献中,我们给出了这一说法具有精确的数学意义。我们表明,在所有解决方案上最大化的Nusselt数在上面都以const。$ \ times ra $为界,然后将注意力限制在对“解决方案的完全湍流分支”的关注之前,定义为以大型驱动幅度的耗散系数有限的非零极限为特征的解决方案。 $ nu $在此类解决方案上的最大化产生了更好的上限$ nu \ simsim \ sqrt {ra} $。然后,我们提供了CISS的3D数值和实验数据,与大型驱动幅度下耗散系数的有限限制值兼容。因此,CISS似乎在完全湍流的溶液上实现了最大的热传输缩放。
Three-dimensional convection driven by internal heat sources and sinks (CISS) leads to experimental and numerical scaling-laws compatible with a mixing-length - or `ultimate' - scaling regime $Nu \sim \sqrt{Ra}$. However, asymptotic analytic solutions and idealized 2D simulations have shown that laminar flow solutions can transport heat even more efficiently, with $Nu \sim Ra$. The turbulent nature of the flow thus has a profound impact on its transport properties. In the present contribution we give this statement a precise mathematical sense. We show that the Nusselt number maximized over all solutions is bounded from above by const.$\times Ra$, before restricting attention to 'fully turbulent branches of solutions', defined as families of solutions characterized by a finite nonzero limit of the dissipation coefficient at large driving amplitude. Maximization of $Nu$ over such branches of solutions yields the better upper-bound $Nu \lesssim \sqrt{Ra}$. We then provide 3D numerical and experimental data of CISS compatible with a finite limiting value of the dissipation coefficient at large driving amplitude. It thus seems that CISS achieves the maximal heat transport scaling over fully turbulent solutions.