论文标题

模拟量子变异嵌入分类器

Analog quantum variational embedding classifier

论文作者

Yang, Rui, Bosch, Samuel, Kiani, Bobak, Lloyd, Seth, Lupascu, Adrian

论文摘要

Quantum机器学习有可能为人工智能提供强大的算法。在量子机学习中对量子优势的追求是一个积极的研究领域。对于当前的噪声,中等规模的量子(NISQ)计算机,已经提出了各种量子古典混合算法。先前提出的混合算法的一种是基于门的变分嵌入分类器,该分类器由经典神经网络和基于参数的栅极量子电路组成。我们提出了一个基于模拟量子计算机的量子变量嵌入分类器,其中控制信号随着时间而变化。在我们的算法中,经典数据通过线性变换转换为模拟量子计算机时变的哈密顿量的参数。非线性分类问题所需的非线性纯粹由模拟量子计算机通过最终量子状态对哈密顿量的控制参数的非线性依赖性提供。我们进行了数值模拟,以证明算法在线性不可分割的数据集(如同心圆和MNIST数字)上执行二进制和多类分类的有效性。我们的分类器可以达到与最佳的古典分类器相当的准确性。我们发现,可以通过增加Qubit的数量来提高分类器的性能,直到性能饱和并波动为止。此外,分类器的优化参数的数量与Qubits的数量线性缩放。因此,当大小增加时,训练参数数量的增加不如神经网络的速度。我们的算法提出了使用当前的量子退火器解决实用机器学习问题的可能性,并且在探索量子机器学习中的量子优势也可能很有用。

Quantum machine learning has the potential to provide powerful algorithms for artificial intelligence. The pursuit of quantum advantage in quantum machine learning is an active area of research. For current noisy, intermediate-scale quantum (NISQ) computers, various quantum-classical hybrid algorithms have been proposed. One such previously proposed hybrid algorithm is a gate-based variational embedding classifier, which is composed of a classical neural network and a parameterized gate-based quantum circuit. We propose a quantum variational embedding classifier based on an analog quantum computer, where control signals vary continuously in time. In our algorithm, the classical data is transformed into the parameters of the time-varying Hamiltonian of the analog quantum computer by a linear transformation. The nonlinearity needed for a nonlinear classification problem is purely provided by the analog quantum computer through the nonlinear dependence of the final quantum state on the control parameters of the Hamiltonian. We performed numerical simulations that demonstrate the effectiveness of our algorithm for performing binary and multi-class classification on linearly inseparable datasets such as concentric circles and MNIST digits. Our classifier can reach accuracy comparable with the best classical classifiers. We find the performance of our classifier can be increased by increasing the number of qubits until the performance saturates and fluctuates. Moreover, the number of optimization parameters of our classifier scales linearly with the number of qubits. The increase of number of training parameters when the size increases is therefore not as fast as that of neural network. Our algorithm presents the possibility of using current quantum annealers for solving practical machine-learning problems, and it could also be useful to explore quantum advantage in quantum machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源