论文标题
部分可观测时空混沌系统的无模型预测
Aligning Recommendation and Conversation via Dual Imitation
论文作者
论文摘要
人类对推荐的对话自然涉及兴趣的转移,这些兴趣可以使推荐行动和对话过程保持一致,以便提供精确的建议和丰富的解释。但是,现有的对话推荐系统(CRS)忽略了用户关联建议和对话中用户兴趣转移的优势,这导致CRS的无效松动耦合结构。为了解决这个问题,通过将建议操作建模为知识图(kg)中的建议路径,我们提出了DICR(对话推荐的双重模仿),该diCR设计了双重模仿,以明确对齐建议路径和用户兴趣移动路径,分别在推荐模块和对话模块中。通过交换对齐信号,DICR可以在建议模块和对话模块之间实现双向促进,并通过准确的建议和相干解释产生高质量的响应。实验表明,与自动,人类和新颖的解释性指标,DICR在建议和对话性能方面的最新模型优于最先进的模型。
Human conversations of recommendation naturally involve the shift of interests which can align the recommendation actions and conversation process to make accurate recommendations with rich explanations. However, existing conversational recommendation systems (CRS) ignore the advantage of user interest shift in connecting recommendation and conversation, which leads to an ineffective loose coupling structure of CRS. To address this issue, by modeling the recommendation actions as recommendation paths in a knowledge graph (KG), we propose DICR (Dual Imitation for Conversational Recommendation), which designs a dual imitation to explicitly align the recommendation paths and user interest shift paths in a recommendation module and a conversation module, respectively. By exchanging alignment signals, DICR achieves bidirectional promotion between recommendation and conversation modules and generates high-quality responses with accurate recommendations and coherent explanations. Experiments demonstrate that DICR outperforms the state-of-the-art models on recommendation and conversation performance with automatic, human, and novel explainability metrics.